Purity of the branch locus and Lefschetz theorems

Steven Dale Cutkosky

Compositio Mathematica (1995)

  • Volume: 96, Issue: 2, page 173-195
  • ISSN: 0010-437X

How to cite


Cutkosky, Steven Dale. "Purity of the branch locus and Lefschetz theorems." Compositio Mathematica 96.2 (1995): 173-195. <http://eudml.org/doc/90361>.

author = {Cutkosky, Steven Dale},
journal = {Compositio Mathematica},
keywords = {purity of branch locus; regular local ring; complete intersection},
language = {eng},
number = {2},
pages = {173-195},
publisher = {Kluwer Academic Publishers},
title = {Purity of the branch locus and Lefschetz theorems},
url = {http://eudml.org/doc/90361},
volume = {96},
year = {1995},

AU - Cutkosky, Steven Dale
TI - Purity of the branch locus and Lefschetz theorems
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 96
IS - 2
SP - 173
EP - 195
LA - eng
KW - purity of branch locus; regular local ring; complete intersection
UR - http://eudml.org/doc/90361
ER -


  1. [AB] M. Auslander and D. Buchsbaum, On ramification theory in noetherian rings, Amer. J. Math.81 (1959), 749-765. Zbl0093.04104MR106929
  2. [BE] D. Buchsbaum and D. Eisenbud, Algebra Structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math.99 (1977), 447-485. Zbl0373.13006MR453723
  3. [CS] S.D. Cutkosky and H. Srinivasan, Local fundamental groups of surface singularities in characteristic p, Comment. Math. Helvetici, 68 (1993), 319-332. Zbl0840.14023MR1214235
  4. [F] G. Faltings, Algebraisation of some formal vector bundles, Annals of Mathematics110 (1979), 501-514. Zbl0395.14005MR554381
  5. [Fn] H. Flenner, Reine lokale ringe der dimension zwei, Math. Ann.216 (1975), 253-263. Zbl0293.13010MR382710
  6. [FH] W. Fulton and J. Hansen, A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Annals of Math.110 (1979), 159-166. Zbl0389.14002MR541334
  7. [FL] W. Fulton and R. Lazarsfeld, Connectivity and its applications to algebraic geometry, Proc. Midwest Algebraic Geom Conf, 1980, Lecture Notes in Math, vol 862, Springer-Verlag, 1981, 26-92. Zbl0484.14005MR644817
  8. [GM] M. Goresky and R. MacPherson, Stratified Morse Theory, Springer-Verlag, Berlin (1988). Zbl0639.14012MR932724
  9. [GR] H. Grauert and R. Remmert, Komplexe Räume, Math. Annalen136 (1958), 245-318. Zbl0087.29003MR103285
  10. [EGA] A. Grothendieck, EGA I-IV, Publ. Math. IHES4,8,11,17,24,28,32. 
  11. [SGA1] A. Grothendieck, Revetements étale et groupe fondemental, Lecture notes in Math.224, Springer-Verlag, Heidelberg (1971). Zbl0234.14002MR354651
  12. [SGA2] A. Grothendieck, Cohomologie locale des Faisceaux coherents et Theoremes de Lefschetz locaux et globaux, North-Holland, Amsterdam (1968). Zbl0197.47202MR476737
  13. [H] H.A. Hamm, lokale topologische eigenschaften komplexer räume, Math. Ann.191 (1971), 235-252. Zbl0214.22801MR286143
  14. [H1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture notes in Math.156, Springer, Berlin (1970). Zbl0208.48901MR282977
  15. [HS] R. Hartshorne and R. Speiser, Local cohomological dimension in characteristic p, Ann. of Math.105 (1977), 45-79. Zbl0362.14002MR441962
  16. [H] R. Hoobler, Applications of Etale depth to Brauer groups and factorial rings, preprint. 
  17. [HH] S. Huckaba and C. Huneke, Rees Algebras of ideals having small analytic deviation, transactions of AMS339 (1993), 373-402. Zbl0813.13009MR1123455
  18. [L] G. Lyubeznik, Etale cohomological dimension and the topology of algebraic varieties, Annals Math.137 (1993), 71-128. Zbl0811.14014MR1200077
  19. [M] J.S. Milne, Étale Cohomology, Princeton University press, Princeton, (1980). Zbl0433.14012MR559531
  20. [N] N. Nagata, On the purity of branch locus in regular local rings, Illinois journal of Math. (1959) 328-333. Zbl0115.26201
  21. [O] A. Ogus, Local cohomological dimension of algebraic varieties, Ann. of Math.98 (1973) 327-365. Zbl0308.14003MR506248
  22. [PS] C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale, I.H.E.S.42 (1973) 327-365. 
  23. [Ra] M. Raynaud, Theoremes de Lefschetz en cohomologie des faisceaux coherents et en cohomologie etale application au groupe fondamental, Ann. scient, Ec. Norm. Sup.7 (1974), 29-52. Zbl0317.14006MR379503
  24. [R] T. Room, The geometry of determinental loci, Cambridge University Press, Cambridge, (1938). Zbl0020.05402JFM64.0693.04
  25. [SUV] A. Simmis, B. Ulrich and W. Vasconcelos, Tangent star cones, to appear in Journal of Algebraic Geometry. 
  26. [V] W. Vasconcelos, Hilbert functions, analytic spread and Koszul homology, Contemporary Mathematics159 (1994). Zbl0803.13012MR1266195
  27. [Z] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. USA Vol44 (1958) 791-796. Zbl0087.35703MR95846

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.