The generalized thue inequality
Julia Mueller; Wolfgang M. Schmidt
Compositio Mathematica (1995)
- Volume: 96, Issue: 3, page 331-344
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- 1 Bombieri, E. and Schmidt, W.M.: On Thue's equation, Invent. Math.88 (1987), 69-81. Zbl0614.10018MR877007
- 2 Evertse, J.H.: Uper bounds for the number of solutions of diophantine equations, Math. Centrum Amsterdam, 1983, 1-127. Zbl0517.10016MR726562
- 3 Lewis, D.J. and Mahler, K.: Representation of integers by binary forms, Acta Arith.6 (1961), 333-363. Zbl0102.03601MR120195
- 4 Mahler, K.: Zur Approximation algebraischer Zahlen. III., Acta Math.62 (1934), 91-166. Zbl0008.19801JFM60.0159.04
- 5 Mahler, K.: An application of Jensen's formula to Polynomials, Mathematika7 (1960), 98-100. Zbl0099.25003MR124467
- 6 Mueller, J. and Schmidt, W.M.: Thue's equation and a conjecture of Siegel, Acta Math.160 (1988), 207-247. Zbl0655.10016MR945012
- 7 Schmidt, W.M.:Thue equations with few coefficients, Trans. A.M.S.303 (1987), 241-255. Zbl0634.10017MR896020
- 8 Schmidt, W.M.: The number of exceptional approximations in Roth's Theorem, (submitted). Zbl0851.11038
- 9 Thunder, J.L.: The number of solutions to cubic Thue inequalities, Acta Arith., J. of the Austral. Math. Soc. (to appear). Zbl0807.11018MR1276991
- 10 Thunder, J.L.: On Thue inequalities and a conjecture of Schmidt, J. of Number Theory, (to appear). Zbl0828.11018MR1336753