On the prime-to- part of the groups of connected components of Néron models
Compositio Mathematica (1995)
- Volume: 97, Issue: 1-2, page 29-49
- ISSN: 0010-437X
Access Full Article
topHow to cite
topEdixhoven, Bas. "On the prime-to-$p$ part of the groups of connected components of Néron models." Compositio Mathematica 97.1-2 (1995): 29-49. <http://eudml.org/doc/90382>.
@article{Edixhoven1995,
author = {Edixhoven, Bas},
journal = {Compositio Mathematica},
keywords = {unipotent rank; toric rank; abelian rank; Néron model of an abelian variety},
language = {eng},
number = {1-2},
pages = {29-49},
publisher = {Kluwer Academic Publishers},
title = {On the prime-to-$p$ part of the groups of connected components of Néron models},
url = {http://eudml.org/doc/90382},
volume = {97},
year = {1995},
}
TY - JOUR
AU - Edixhoven, Bas
TI - On the prime-to-$p$ part of the groups of connected components of Néron models
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 29
EP - 49
LA - eng
KW - unipotent rank; toric rank; abelian rank; Néron model of an abelian variety
UR - http://eudml.org/doc/90382
ER -
References
top- 1 Bosch, S., Lütkebohmert, W. and Raynaud, M.: Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3Folge, Band21, Springer-Verlag, 1990. Zbl0705.14001MR1045822
- 2 Deligne, P. and Rapoport, M.: Les schémas de modules de courbes elliptiques, in Modular Functions of One Variable II, Lecture Notes in Math.349, Springer-Verlag, 1975, pp. 143-316. Zbl0281.14010MR337993
- 3 Edixhoven, B.: Néron models and tame ramification, Compositio Mathematica81 (1992), 291-306. Zbl0759.14033MR1149171
- 4 Edixhoven, B., Liu, Q. and Lorenzini, D.: The p-part of the group of components. To be submitted for publication. Zbl0898.14007
- 5 Grothendieck, A.: Modèles de Néron et monodromie, Lecture Notes in Math.288, Séminaire de Géométrie 7, Exposé IX, Springer-Verlag, 1973. Zbl0248.14006
- 6 Lenstra, H.W. and Oort, F.: Abelian varieties having purely additive reduction, J. Pure Appl. Algebra36 (1985), 281-298. Zbl0557.14022MR790619
- 7 Lorenzini, D.: On the group of components of a Néron model, J. Reine Angew. Math.445 (1993), 109-160. Zbl0781.14029MR1244970
- 8 MacDonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford, Clarendon Press, Oxford, 1979. Zbl0487.20007MR553598
- 9 Milne, J.S.: Arithmetic Duality Theorems, Perspectives in Math.1, Academic Press, New York, 1986. Zbl0613.14019MR881804
- 10 Moret-Bailly, L.: Pinceaux de Variétés Abéliennes, Astérisque129, Société Mathématique de France, 1985. Zbl0595.14032MR797982
- 11 Mumford, D.: An analytic construction of degenerating abelian varieties over complete rings, Compositio Mathematica24(3) (1972), 239-272. Zbl0241.14020MR352106
- 12 Oort, F.: Good and stable reduction of abelian varieties, Manuscripta Math.11 (1974), 171-197. Zbl0266.14016MR347834
- 13 Tate, J.: Algorithm for determining the type of a singular fibre in an elliptic pencil, in Modular Functions of One Variable IV, Lecture Notes in Math.476, Springer-Verlag, 1975, pp. 33-52. Zbl1214.14020MR393039
- 14 Winters, G.: On the Existence of Certain Families of Curves, Am. J. Math.96 (1974), 215-228. Zbl0334.14004MR357406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.