On the prime-to- p part of the groups of connected components of Néron models

Bas Edixhoven

Compositio Mathematica (1995)

  • Volume: 97, Issue: 1-2, page 29-49
  • ISSN: 0010-437X

How to cite

top

Edixhoven, Bas. "On the prime-to-$p$ part of the groups of connected components of Néron models." Compositio Mathematica 97.1-2 (1995): 29-49. <http://eudml.org/doc/90382>.

@article{Edixhoven1995,
author = {Edixhoven, Bas},
journal = {Compositio Mathematica},
keywords = {unipotent rank; toric rank; abelian rank; Néron model of an abelian variety},
language = {eng},
number = {1-2},
pages = {29-49},
publisher = {Kluwer Academic Publishers},
title = {On the prime-to-$p$ part of the groups of connected components of Néron models},
url = {http://eudml.org/doc/90382},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Edixhoven, Bas
TI - On the prime-to-$p$ part of the groups of connected components of Néron models
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 29
EP - 49
LA - eng
KW - unipotent rank; toric rank; abelian rank; Néron model of an abelian variety
UR - http://eudml.org/doc/90382
ER -

References

top
  1. 1 Bosch, S., Lütkebohmert, W. and Raynaud, M.: Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3Folge, Band21, Springer-Verlag, 1990. Zbl0705.14001MR1045822
  2. 2 Deligne, P. and Rapoport, M.: Les schémas de modules de courbes elliptiques, in Modular Functions of One Variable II, Lecture Notes in Math.349, Springer-Verlag, 1975, pp. 143-316. Zbl0281.14010MR337993
  3. 3 Edixhoven, B.: Néron models and tame ramification, Compositio Mathematica81 (1992), 291-306. Zbl0759.14033MR1149171
  4. 4 Edixhoven, B., Liu, Q. and Lorenzini, D.: The p-part of the group of components. To be submitted for publication. Zbl0898.14007
  5. 5 Grothendieck, A.: Modèles de Néron et monodromie, Lecture Notes in Math.288, Séminaire de Géométrie 7, Exposé IX, Springer-Verlag, 1973. Zbl0248.14006
  6. 6 Lenstra, H.W. and Oort, F.: Abelian varieties having purely additive reduction, J. Pure Appl. Algebra36 (1985), 281-298. Zbl0557.14022MR790619
  7. 7 Lorenzini, D.: On the group of components of a Néron model, J. Reine Angew. Math.445 (1993), 109-160. Zbl0781.14029MR1244970
  8. 8 MacDonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford, Clarendon Press, Oxford, 1979. Zbl0487.20007MR553598
  9. 9 Milne, J.S.: Arithmetic Duality Theorems, Perspectives in Math.1, Academic Press, New York, 1986. Zbl0613.14019MR881804
  10. 10 Moret-Bailly, L.: Pinceaux de Variétés Abéliennes, Astérisque129, Société Mathématique de France, 1985. Zbl0595.14032MR797982
  11. 11 Mumford, D.: An analytic construction of degenerating abelian varieties over complete rings, Compositio Mathematica24(3) (1972), 239-272. Zbl0241.14020MR352106
  12. 12 Oort, F.: Good and stable reduction of abelian varieties, Manuscripta Math.11 (1974), 171-197. Zbl0266.14016MR347834
  13. 13 Tate, J.: Algorithm for determining the type of a singular fibre in an elliptic pencil, in Modular Functions of One Variable IV, Lecture Notes in Math.476, Springer-Verlag, 1975, pp. 33-52. Zbl1214.14020MR393039
  14. 14 Winters, G.: On the Existence of Certain Families of Curves, Am. J. Math.96 (1974), 215-228. Zbl0334.14004MR357406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.