Selfdual and non-selfdual 3-dimensional Galois representations

Bert Van Geemen; Jaap Top

Compositio Mathematica (1995)

  • Volume: 97, Issue: 1-2, page 51-70
  • ISSN: 0010-437X

How to cite


Van Geemen, Bert, and Top, Jaap. "Selfdual and non-selfdual 3-dimensional Galois representations." Compositio Mathematica 97.1-2 (1995): 51-70. <>.

author = {Van Geemen, Bert, Top, Jaap},
journal = {Compositio Mathematica},
keywords = {Galois representations; elliptic surface},
language = {eng},
number = {1-2},
pages = {51-70},
publisher = {Kluwer Academic Publishers},
title = {Selfdual and non-selfdual 3-dimensional Galois representations},
url = {},
volume = {97},
year = {1995},

AU - Van Geemen, Bert
AU - Top, Jaap
TI - Selfdual and non-selfdual 3-dimensional Galois representations
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 51
EP - 70
LA - eng
KW - Galois representations; elliptic surface
UR -
ER -


  1. [AGG] Ash, A., Grayson, D. and Green, P.: "Computations of Cuspidal Cohomology of Congruence Subgroups of SL(3, Z)", J. Number Theory19 (1984) 412-436. Zbl0552.10015MR769792
  2. [BPV] Barth, W., Peters, C. and van de Ven, A.: Compact Complex Surfaces. Springer-Verlag, Ergebnisse 3.Folge-Band4 (1984). Zbl0718.14023MR749574
  3. [C] Clozel, L.: "Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n)", Publ. Math. IHES73 (1991) 79-145. Zbl0739.11020MR1114211
  4. [GKTV] Bert van Geemen, Wilberd van der Kallen, Jaap Top and Alain Verberkmoes, "Hecke eigenforms in the Cuspidal Cohomology of Congruence Subgroups of SL(3, Z) ", work in progress (1994). Zbl1088.11037
  5. [vG-T] Bert van Geemen and Jaap Top, "A non-selfdual automorphic representation of GL3 and a Galois representation", Invent. Math.117 (1994) 391-401. Zbl0849.11046MR1283724
  6. [K] Kodaira, K.: "On compact analytic surfaces III", Ann. of Math.78 (1963) 1-40. Zbl0171.19601MR184257
  7. [M] Morrison, D.R.: "On K3 surfaces with large Picard number ", Invent. Math.75 (1984) 105-121. Zbl0509.14034MR728142
  8. [Mum] Mumford, D.: "Abelian Varieties". Tata Inst. and Oxford Univ. Press, 1974 (2nd edition). Zbl0326.14012MR282985
  9. [O-S] Oguiso, K. and Shioda, T.: "The Mordell-Weil lattice of rational elliptic surfaces", Comm. Math. Univ. Sancti Pauli, 40 (1991) 83-99. Zbl0757.14011MR1104782
  10. [O] Oort, F.: "Endomorphism algebras of abelian varieties", In: Alg. Geom. and Commut. Alg. in honor of M. Nagata (eds. H. Hijikata et al.), Kinokuniya Cy., 1988. Vol. II, 469-502. Zbl0697.14029MR977774
  11. [P] Persson, U.: "Configurations of Kodaira fibers on rational elliptic surfaces", Math. Z.205 (1990) 1-47. Zbl0722.14021MR1069483
  12. [S] Shioda, T.: "On the Mordell-Weil Lattices", Comm. Math. Univ. Sancti Pauli, 39 (1990) 211-240. Zbl0725.14017MR1081832
  13. [T] Jaap Top:" Hecke L-functions related with algebraic cycles or with Siegel modular forms ", PhD thesis, Utrecht, 1989. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.