Homogeneous varieties for semisimple groups of rank one
Compositio Mathematica (1995)
- Volume: 98, Issue: 1, page 77-89
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKnop, Friedrich. "Homogeneous varieties for semisimple groups of rank one." Compositio Mathematica 98.1 (1995): 77-89. <http://eudml.org/doc/90395>.
@article{Knop1995,
author = {Knop, Friedrich},
journal = {Compositio Mathematica},
keywords = {action of reductive group; orbit of Borel subgroup},
language = {eng},
number = {1},
pages = {77-89},
publisher = {Kluwer Academic Publishers},
title = {Homogeneous varieties for semisimple groups of rank one},
url = {http://eudml.org/doc/90395},
volume = {98},
year = {1995},
}
TY - JOUR
AU - Knop, Friedrich
TI - Homogeneous varieties for semisimple groups of rank one
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 1
SP - 77
EP - 89
LA - eng
KW - action of reductive group; orbit of Borel subgroup
UR - http://eudml.org/doc/90395
ER -
References
top- [Bo] Borel, A.: On affine algebraic homogeneous spaces. Archiv Math45 (1985), 74-78. Zbl0554.14016MR799451
- [DG] Demazure, M. and Gabriel, P.: Groupes algébriques. Amsterdam: North-Holland1970. Zbl0203.23401
- [Di] Dickson, L.E.: Linear Groups. New York: Dover Publications1958. Zbl0082.24901MR104735
- [Hu] Huppert, B.: Endliche Gruppen I. Grundlehren134Berlin- Heidelberg-New York: Springer-Verlag1967. Zbl0217.07201MR224703
- [Ja] Jantzen, J.C.: Representations of algebraic groups. PureAppl. Math.131Orlando: Academic Press1987. Zbl0654.20039MR899071
- [Kl] Klein, F.: Vorlesungen über das Ikosaeder (reprint, with comments by P. Slodowy). Basel: Birkhäuser1993. MR1315530
- [Kn] Knop, F.: On the set of orbits for a Borel subgroup. To appear in Comment. Math. Helv. (1995), 22 pages. Zbl0828.22016MR1324631
- [MO] Meyer, H.-M. and Oberst, U.: Fixpunkt- und Struktursätze für affine, algebraische Gruppen-schemata in Charakteristik p. Math. Annalen227 (1977), 67-96. Zbl0327.14014MR429927
- [Wa] Waterhouse, W.: Subgroups of ax + b and the splitting of triangular group schemes. Proc. AMS79 (1980), 520-522. Zbl0442.14018MR572293
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.