Homogeneous varieties for semisimple groups of rank one

Friedrich Knop

Compositio Mathematica (1995)

  • Volume: 98, Issue: 1, page 77-89
  • ISSN: 0010-437X

How to cite

top

Knop, Friedrich. "Homogeneous varieties for semisimple groups of rank one." Compositio Mathematica 98.1 (1995): 77-89. <http://eudml.org/doc/90395>.

@article{Knop1995,
author = {Knop, Friedrich},
journal = {Compositio Mathematica},
keywords = {action of reductive group; orbit of Borel subgroup},
language = {eng},
number = {1},
pages = {77-89},
publisher = {Kluwer Academic Publishers},
title = {Homogeneous varieties for semisimple groups of rank one},
url = {http://eudml.org/doc/90395},
volume = {98},
year = {1995},
}

TY - JOUR
AU - Knop, Friedrich
TI - Homogeneous varieties for semisimple groups of rank one
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 1
SP - 77
EP - 89
LA - eng
KW - action of reductive group; orbit of Borel subgroup
UR - http://eudml.org/doc/90395
ER -

References

top
  1. [Bo] Borel, A.: On affine algebraic homogeneous spaces. Archiv Math45 (1985), 74-78. Zbl0554.14016MR799451
  2. [DG] Demazure, M. and Gabriel, P.: Groupes algébriques. Amsterdam: North-Holland1970. Zbl0203.23401
  3. [Di] Dickson, L.E.: Linear Groups. New York: Dover Publications1958. Zbl0082.24901MR104735
  4. [Hu] Huppert, B.: Endliche Gruppen I. Grundlehren134Berlin- Heidelberg-New York: Springer-Verlag1967. Zbl0217.07201MR224703
  5. [Ja] Jantzen, J.C.: Representations of algebraic groups. PureAppl. Math.131Orlando: Academic Press1987. Zbl0654.20039MR899071
  6. [Kl] Klein, F.: Vorlesungen über das Ikosaeder (reprint, with comments by P. Slodowy). Basel: Birkhäuser1993. MR1315530
  7. [Kn] Knop, F.: On the set of orbits for a Borel subgroup. To appear in Comment. Math. Helv. (1995), 22 pages. Zbl0828.22016MR1324631
  8. [MO] Meyer, H.-M. and Oberst, U.: Fixpunkt- und Struktursätze für affine, algebraische Gruppen-schemata in Charakteristik p. Math. Annalen227 (1977), 67-96. Zbl0327.14014MR429927
  9. [Wa] Waterhouse, W.: Subgroups of ax + b and the splitting of triangular group schemes. Proc. AMS79 (1980), 520-522. Zbl0442.14018MR572293

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.