A Bezout theorem for determinantal modules

James Damon

Compositio Mathematica (1995)

  • Volume: 98, Issue: 2, page 117-139
  • ISSN: 0010-437X

How to cite


Damon, James. "A Bezout theorem for determinantal modules." Compositio Mathematica 98.2 (1995): 117-139. <http://eudml.org/doc/90397>.

author = {Damon, James},
journal = {Compositio Mathematica},
keywords = {determinantal ideal; generalized Pascal triangle; Macaulay-Bezout number; Bezout's theorem},
language = {eng},
number = {2},
pages = {117-139},
publisher = {Kluwer Academic Publishers},
title = {A Bezout theorem for determinantal modules},
url = {http://eudml.org/doc/90397},
volume = {98},
year = {1995},

AU - Damon, James
TI - A Bezout theorem for determinantal modules
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 2
SP - 117
EP - 139
LA - eng
KW - determinantal ideal; generalized Pascal triangle; Macaulay-Bezout number; Bezout's theorem
UR - http://eudml.org/doc/90397
ER -


  1. [A] Alexandrov, A.G.: Cohomology of a quasihomogeneous complete intersection, Math. USSR Izvestiya26iii (1986) 437-477. Zbl0647.14027
  2. [D1] Damon, J.: Higher Multiplicities and Almost Free Divisors and Complete Intersections (preprint). Zbl0867.32015MR1346928
  3. [D2] Damon, J.: Topological Triviality and Versality for Subgroups of A and K II: Sufficient Conditions and Applications, Nonlinearity5 (1992) 373-412. Zbl0747.58014MR1158379
  4. [DM] Damon, J. and Mond, D.: A-codimension and the vanishing topology of discriminants, Invent. Math.106 (1991) 217-242. Zbl0772.32023MR1128213
  5. [G] Goryunov, V.V.: Poincaré polynomial of the space of residue forms on a quasihomogeneous complete intersection, Russ. Math. Surveys35ii (1980) 241-242. Zbl0462.32003
  6. [Mc] Macaulay, F.S.: The algebraic theory of modular systems, Cambridge Tracts 19 (1916). Zbl0802.13001JFM46.0167.01
  7. [MO] Milnor, J. and Orlik, P.: Isolated Singularities defined by Weighted Homogeneous Polynomials, Topology9 (1970) 385-393. Zbl0204.56503MR293680
  8. [No] Northcott, D.G.: Semi-regular rings and semi-regular ideals, Quart. J. Math. Oxford, (2), 11 (1960) 81-104. Zbl0112.03001MR114835
  9. [OT] Orlik, P. and Terao, H.: Arrangements and Milnor Fibers (to appear Math. Annalen). Zbl0813.32033MR1314585
  10. [R] Riordan, J.: Introduction to Combinatorial Analysis, Wiley, New York, 1958. Zbl0078.00805MR96594
  11. [T] Terao, H.: Generalized exponents of a free arrangement of hyperplanes and the Shephard-Todd-Brieskom formula, Invent. Math.63 (1981) 159-179. Zbl0437.51002MR608532
  12. [W] Wall, C.T.C.: Weighted Homogeneous Complete Intersections (preprint). MR1395187
  13. [ZS] Zariski, O. and Samuel, P.: Commutative Algebra, reprinted as Springer Grad. Text in Math. 28 and 29, Springer Verlag, 1975. Zbl0313.13001

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.