A Bezout theorem for determinantal modules

James Damon

Compositio Mathematica (1995)

  • Volume: 98, Issue: 2, page 117-139
  • ISSN: 0010-437X

How to cite

top

Damon, James. "A Bezout theorem for determinantal modules." Compositio Mathematica 98.2 (1995): 117-139. <http://eudml.org/doc/90397>.

@article{Damon1995,
author = {Damon, James},
journal = {Compositio Mathematica},
keywords = {determinantal ideal; generalized Pascal triangle; Macaulay-Bezout number; Bezout's theorem},
language = {eng},
number = {2},
pages = {117-139},
publisher = {Kluwer Academic Publishers},
title = {A Bezout theorem for determinantal modules},
url = {http://eudml.org/doc/90397},
volume = {98},
year = {1995},
}

TY - JOUR
AU - Damon, James
TI - A Bezout theorem for determinantal modules
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 2
SP - 117
EP - 139
LA - eng
KW - determinantal ideal; generalized Pascal triangle; Macaulay-Bezout number; Bezout's theorem
UR - http://eudml.org/doc/90397
ER -

References

top
  1. [A] Alexandrov, A.G.: Cohomology of a quasihomogeneous complete intersection, Math. USSR Izvestiya26iii (1986) 437-477. Zbl0647.14027
  2. [D1] Damon, J.: Higher Multiplicities and Almost Free Divisors and Complete Intersections (preprint). Zbl0867.32015MR1346928
  3. [D2] Damon, J.: Topological Triviality and Versality for Subgroups of A and K II: Sufficient Conditions and Applications, Nonlinearity5 (1992) 373-412. Zbl0747.58014MR1158379
  4. [DM] Damon, J. and Mond, D.: A-codimension and the vanishing topology of discriminants, Invent. Math.106 (1991) 217-242. Zbl0772.32023MR1128213
  5. [G] Goryunov, V.V.: Poincaré polynomial of the space of residue forms on a quasihomogeneous complete intersection, Russ. Math. Surveys35ii (1980) 241-242. Zbl0462.32003
  6. [Mc] Macaulay, F.S.: The algebraic theory of modular systems, Cambridge Tracts 19 (1916). Zbl0802.13001JFM46.0167.01
  7. [MO] Milnor, J. and Orlik, P.: Isolated Singularities defined by Weighted Homogeneous Polynomials, Topology9 (1970) 385-393. Zbl0204.56503MR293680
  8. [No] Northcott, D.G.: Semi-regular rings and semi-regular ideals, Quart. J. Math. Oxford, (2), 11 (1960) 81-104. Zbl0112.03001MR114835
  9. [OT] Orlik, P. and Terao, H.: Arrangements and Milnor Fibers (to appear Math. Annalen). Zbl0813.32033MR1314585
  10. [R] Riordan, J.: Introduction to Combinatorial Analysis, Wiley, New York, 1958. Zbl0078.00805MR96594
  11. [T] Terao, H.: Generalized exponents of a free arrangement of hyperplanes and the Shephard-Todd-Brieskom formula, Invent. Math.63 (1981) 159-179. Zbl0437.51002MR608532
  12. [W] Wall, C.T.C.: Weighted Homogeneous Complete Intersections (preprint). MR1395187
  13. [ZS] Zariski, O. and Samuel, P.: Commutative Algebra, reprinted as Springer Grad. Text in Math. 28 and 29, Springer Verlag, 1975. Zbl0313.13001

NotesEmbed ?

top

You must be logged in to post comments.