Deformation of Hilbert schemes of points on a surface

Barbara Fantechi

Compositio Mathematica (1995)

  • Volume: 98, Issue: 2, page 205-217
  • ISSN: 0010-437X

How to cite


Fantechi, Barbara. "Deformation of Hilbert schemes of points on a surface." Compositio Mathematica 98.2 (1995): 205-217. <>.

author = {Fantechi, Barbara},
journal = {Compositio Mathematica},
keywords = {Hilbert schemes of points; -fold symmetric product of projective surface; deformation theory},
language = {eng},
number = {2},
pages = {205-217},
publisher = {Kluwer Academic Publishers},
title = {Deformation of Hilbert schemes of points on a surface},
url = {},
volume = {98},
year = {1995},

AU - Fantechi, Barbara
TI - Deformation of Hilbert schemes of points on a surface
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 2
SP - 205
EP - 217
LA - eng
KW - Hilbert schemes of points; -fold symmetric product of projective surface; deformation theory
UR -
ER -


  1. [B] Beauville, A., 1983, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom.18, 755-782. Zbl0537.53056MR730926
  2. [Br] Brieskorn, E., 1966, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann.166, 76-102. Zbl0145.09402MR206973
  3. [B-W] Bums, D.M. and Wahl, J.M., 1974, Local Contributions to Global Deformations of Surfaces, Invent. Math.26, 67-88. Zbl0288.14010MR349675
  4. [C1] Catanese, F., 1988, Moduli of Algebraic Surfaces, in Theory of Moduli, LNM1337 (ed. E. Semesi), Springer, Berlin-Heidelberg - New York. Zbl0658.14017MR963062
  5. [C2] Catanese, F., 1989, Everywhere non-reduced moduli spaces, Invent. Math.98, 293-310. Zbl0701.14039MR1016266
  6. [F1] Fantechi, B., 1993, Deformations of symmetric products of curves, to appear in: Proceedings the conference 'Classification of Algebraic Varieties', L'Aquila May 1992 (ed. L. Livorni), Contemporary Mathematics, AMS. Zbl0826.14018MR1272697
  7. [F2] Fantechi, B., Thesis, in preparation. 
  8. [Fu] Fujiki, A., 1983, On Primitively Symplectic Compact Kähler V-manifolds of Dimension four, in Classification of Algebraic and Analytic Manifolds, Katata1982 (ed. K. Ueno), Birkhäuser, Boston-Basel- Stuttgart, 71-250. Zbl0549.32018MR728609
  9. [G-K] Greuel, G.-M. and Karras, U., 1989, Families of varieties with prescribed singularities, Comp. Math.69, 83-110. Zbl0684.32015MR986814
  10. [Gr] Grothendieck, A., 1967, Local Cohomology, LNM41, Springer, Berlin-Heidelberg- New York. Zbl0185.49202MR224620
  11. [Ha] Hartshorne, R., 1977, Algebraic Geometry, GTM52, Springer, Berlin-Heidelberg-New York. Zbl0367.14001MR463157
  12. [Ka] Kaplanski, I., 1974, Commutative Rings, The University of Chicago Press, Chicago and London. Zbl0296.13001MR345945
  13. [Ke] Kempf, G., 1980, Deformations of symmetric products, in Riemann Surfaces and Related Topics, Ann. Math. Studies97, 319-341. Zbl0465.14013MR624823
  14. [Kw] Kawamata, Y., 1992, Unobstructed deformations - a remark on a paper of Z. Ran, J. Alg. Geom.1, 183-190. Zbl0818.14004MR1144434
  15. [R1] Ran, Z., 1991, Stability for certain holomorphic maps, J. Diff. Geom.34, 37-47. Zbl0755.32017MR1114451
  16. [R2] Ran, Z., 1992, Deformations of manifolds with torsion or negative canonical bundle, J. Alg. Geom.1, 279-291. Zbl0818.14003MR1144440
  17. [Sai] Saito, M.-H., 1988, New examples of obstructed complex manifolds in higher dimension, Max-Planck-Institut preprint. MR1000123
  18. [Schl] Schlessinger, M., 1971, Rigidity of Quotient Singularities, Invent. Math.14, 17-26. Zbl0232.14005MR292830
  19. [St] Steenbrink, J.H.M., 1977, Mixed Hodge structure in the vanishing cohomology, in Real and complex singularities, Oslo1976 (ed. P. Holm), Sijthoff and Noordhoff, Alphen aan den Rijn, 535-563. Zbl0373.14007MR485870

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.