Harmonic almost-complex structures

C. M. Wood

Compositio Mathematica (1995)

  • Volume: 99, Issue: 2, page 183-212
  • ISSN: 0010-437X

How to cite

top

Wood, C. M.. "Harmonic almost-complex structures." Compositio Mathematica 99.2 (1995): 183-212. <http://eudml.org/doc/90413>.

@article{Wood1995,
author = {Wood, C. M.},
journal = {Compositio Mathematica},
keywords = {almost-complex structures; harmonic sections; stably harmonic; almost- Kähler structures},
language = {eng},
number = {2},
pages = {183-212},
publisher = {Kluwer Academic Publishers},
title = {Harmonic almost-complex structures},
url = {http://eudml.org/doc/90413},
volume = {99},
year = {1995},
}

TY - JOUR
AU - Wood, C. M.
TI - Harmonic almost-complex structures
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 99
IS - 2
SP - 183
EP - 212
LA - eng
KW - almost-complex structures; harmonic sections; stably harmonic; almost- Kähler structures
UR - http://eudml.org/doc/90413
ER -

References

top
  1. 1 Abbena, E.: An example of an almost Kähler manifold which is not Kählerian, Bol. U.M.I.3 (1984), 383-392. Zbl0559.53023MR769169
  2. 2 Abbena, E.: Una osservazione sulle varieta almost Kähler, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (1982), 357-362. Zbl0576.53018
  3. 3 Besse, A.L.: Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1987. Zbl0613.53001MR867684
  4. 4 Blair, D. and Ianus, S.: Critical associated metrics on symplectic manifolds, Contemp. Math.51 (1986), 23-29. Zbl0591.53030MR848929
  5. 5 Bourguignon, J.P. and Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys.79 (1981), 189-230. Zbl0475.53060MR612248
  6. 6 Calabi, E. and Gluck, H.: What are the best almost-complex structures on the 6-sphere? Preprint, 1990. Zbl0790.53036MR1216531
  7. 7 Chern, S-S.: Complex Manifolds without Potential Theory, Universitext, Springer-Verlag, New York, 1979. Zbl0444.32004MR533884
  8. 8 Dombrowski, P.: On the geometry of the tangent bundle, Crelles J.210 (1962), 73-88. Zbl0105.16002MR141050
  9. 9 Eells, J. and Lemaire, L.: Selected Topics in Harmonic Maps, C.B.M.S. Regional Conference Series 50, American Math. Soc., Providence, R.I., 1983. Zbl0515.58011MR703510
  10. 10 Eells, J. and Salamon, S.: Twistorial constuctions of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Pisa12 (1985), 589-640. Zbl0627.58019MR848842
  11. 11 Eells, J. and Sampson, J.H.: Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109-160. Zbl0122.40102MR164306
  12. 12 Goldberg, S.: Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc.21 (1969), 96-100. Zbl0174.25002MR238238
  13. 13 Gray, A.: Some examples of almost Hermitian manifolds, Illinois J. Math.10 (1966), 353-366. Zbl0183.50803MR190879
  14. 14 Gray, A.: Vector cross products on manifolds, Trans. Amer. Math. Soc.141 (1969), 465-504. Zbl0182.24603MR243469
  15. 15 Gray, A.: The structure of nearly Kähler manifolds, Math. Ann.223 (1976), 233-248. Zbl0345.53019MR417965
  16. 16 Gray, A.: Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J.28 (1976), 601-612. Zbl0351.53040MR436054
  17. 17 Gray, A. and Hervella, L.: The sixteen classes of almost Hermitian manifolds, and their linear invariants, Ann. Mat. Pura ed App.123 (1980), 35-58. Zbl0444.53032MR581924
  18. 18 Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vols 1-2, Wiley, New York, 1963, London, 1966. Zbl0119.37502
  19. 19 Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, Crelles J.250 (1970), 124-129. Zbl0222.53044MR286028
  20. 20 Lichnerowicz, A.: Applications harmoniques et variétés Kählériennes, in Proc. Symp. Math. III, Bologna, 1970, pp. 341-402. Zbl0193.50101MR262993
  21. 21 O'Neill, B.: The fundamental equations of a submersion, Michigan Math. J.13 (1966), 459-469. Zbl0145.18602MR200865
  22. 22 Salamon, S.: Harmonic and holomorphic maps, in Lecture Notes in Math. 1164, Springer-Verlag, Berlin, 1985, pp. 161-224. Zbl0591.53031MR829230
  23. 23 Salamon, S.: Topics in four-dimensional Riemannian geometry, in Lecture Notes in Math. 1022, Springer-Verlag, Berlin, 1983, pp. 33-124. Zbl0532.53035MR728393
  24. 24 Sekigawa, K. and Vanhecke, L.: Four-dimensional almost Kähler Einstein manifolds, Ann. Mat. Pura ed App.157 (1990), 149-160. Zbl0731.53026MR1108474
  25. 25 Smith, R.T.: The second variation formula for harmonic mappings, Proc. A.M.S. 47 (1975), 229-236. Zbl0303.58008MR375386
  26. 26 Thurston, W.P.: Some simple examples of symplectic manifolds, Proc. A.M.S. 55 (1976), 467-468. Zbl0324.53031MR402764
  27. 27 Tricerri, F. and Vanhecke, L.: Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc.26 (1981), 365-398. Zbl0484.53014MR626479
  28. 28 Valli, G.: Some remarks on geodesics in gauge groups, and harmonic maps, J. Geom. Phys.4 (1987), 335-359. Zbl0656.58010MR957018
  29. 29 Vilms, J.: Totally geodesic maps, J. Diff. Geom.4 (1970), 73-79. Zbl0194.52901MR262984
  30. 30 Wood, C.M.: The Gauss section of a Riemannian immersion, J. London Math. Soc.33 (1986), 157-168. Zbl0607.53036MR829396
  31. 31 Wood, C.M.: Instability of the nearly-Kähler 6-sphere, Crelles J.439 (1993), 205-212. Zbl0765.53025MR1219700
  32. 32 Xin, Y-L.: Some results on stable harmonic maps, Duke Math. J.47 (1980), 609-613. Zbl0513.58019MR587168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.