Algebraic cycles on generic abelian varieties

Najmuddin Fakhruddin

Compositio Mathematica (1996)

  • Volume: 100, Issue: 1, page 101-119
  • ISSN: 0010-437X

How to cite

top

Fakhruddin, Najmuddin. "Algebraic cycles on generic abelian varieties." Compositio Mathematica 100.1 (1996): 101-119. <http://eudml.org/doc/90419>.

@article{Fakhruddin1996,
author = {Fakhruddin, Najmuddin},
journal = {Compositio Mathematica},
keywords = {abelian variety; cycles generated by divisors; Chow groups; Griffiths group},
language = {eng},
number = {1},
pages = {101-119},
publisher = {Kluwer Academic Publishers},
title = {Algebraic cycles on generic abelian varieties},
url = {http://eudml.org/doc/90419},
volume = {100},
year = {1996},
}

TY - JOUR
AU - Fakhruddin, Najmuddin
TI - Algebraic cycles on generic abelian varieties
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 100
IS - 1
SP - 101
EP - 119
LA - eng
KW - abelian variety; cycles generated by divisors; Chow groups; Griffiths group
UR - http://eudml.org/doc/90419
ER -

References

top
  1. 1 Beauville, A.: Prym varieties and the Schottky problem. Invent.-Math, 41:149-196,1977. Zbl0333.14013MR572974
  2. 2 Beauville, A.: Sur l'anneau de Chow d'une variete abelienne. Math.-Ann, 273:647-651,1986. Zbl0566.14003MR826463
  3. 3 Borel, A.: Stable real cohomology of arithmetic groups. Manifolds and Lie groups, Progr. Math.14. Birkhauser, 1981. Zbl0483.57026MR642850
  4. 4 Bosch, A., Lutkebohmert, W. and Raynaud, M.: Neron Models. Springer Verlag, 1990. Zbl0705.14001MR1045822
  5. 5 Ceresa, G.: C is not algebraically equivalent to C- in its Jacobian. Ann.-of Math, 117:285-291, 1983. Zbl0538.14024MR690847
  6. 6 Colombo, E. and van Geemen, B.: Note on curves in a Jacobian. Compo.-Math, 88:333-353, 1993. Zbl0802.14002MR1241954
  7. 7 Deligne, P.: Theoreme de Lefschetz et Criteres de Degenerescence de Suites Spectrales. Inst.-Hautes-Etudes-Sci.-Publ.-Math, 35:19-68, 1968. Zbl0159.22501MR244265
  8. 8 Deligne, P.: La conjecture de Weil I. Inst.-Hautes-Etudes-Sci.-Publ.-Math, 43:273-307, 1974. Zbl0287.14001MR340258
  9. 9 Deninger, C. and Murre, J.: Motivic decomposition of abelian schemes and the Fourier transform. J.-Reine-Angew. -Math, 422:201-219,1991. Zbl0745.14003MR1133323
  10. 10 Dold, A.: Lectures on Algebraic Topology. Springer Verlag, 1972. Zbl0234.55001MR415602
  11. 11 Donagi, R. and Smith, R.: The Structure of the Prym map. Acta.-Math, 146:25-102,1981. Zbl0538.14019MR594627
  12. 12 Fakhruddin, N.: Algebraic cycles on generic Abelian varieties. PhD thesis, The University of Chicago, 1995. 
  13. 13 Faltings, G. and Chai, C-L.: Degeneration of Abelian Varieties. Springer Verlag, 1990. Zbl0744.14031MR1083353
  14. 14 Fulton, W.: Intersection Theory. Springer Verlag, 1984. Zbl0541.14005MR732620
  15. 15 Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann.-of-Math, 74:329-387, 1961. Zbl0134.03501MR142696
  16. 16 Mostafa, S.: Die Singularitaten der Modulmannigfaltigkeiten... J.-reine-Angew.-Math, 343:81-98, 1983. Zbl0526.14012MR705878
  17. 17 Nori, M.: Cycles on the generic Abelian threefold. Proc.-Ind.-Acad.-Sci, 99:191-196, 1989. Zbl0725.14006MR1032704
  18. 18 Nori, M.: Algebraic cycles and Hodge theoretic connectivity. Invent.-Math, 111:349-373, 1993. Zbl0822.14008MR1198814
  19. 19 Popp, H.: Moduli Theory and Classification Theory of Algebraic Varieties. LNM620. Springer Verlag, 1977. Zbl0359.14005MR466143
  20. 20 Saito, M.: Mixed Hodge modules. Publ.-Res.-Inst.-Math.-Sci.(Kyoto University), 26:221-333, 1990. Zbl0727.14004MR1047415
  21. 21 Zucker, S.: Locally homogeneous variations of Hodge structure. Enseign.-Math, 27:243-276, 1981. Zbl0584.14003MR659151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.