Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials
Pavel I. Etingof; Alexander A. Kirillov, Jr.
Compositio Mathematica (1996)
- Volume: 102, Issue: 2, page 179-202
- ISSN: 0010-437X
Access Full Article
topHow to cite
topEtingof, Pavel I., and Kirillov, Jr., Alexander A.. "Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials." Compositio Mathematica 102.2 (1996): 179-202. <http://eudml.org/doc/90452>.
@article{Etingof1996,
author = {Etingof, Pavel I., Kirillov, Jr., Alexander A.},
journal = {Compositio Mathematica},
keywords = {quantum groups; Macdonald's polynomials; symmetry identities},
language = {eng},
number = {2},
pages = {179-202},
publisher = {Kluwer Academic Publishers},
title = {Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials},
url = {http://eudml.org/doc/90452},
volume = {102},
year = {1996},
}
TY - JOUR
AU - Etingof, Pavel I.
AU - Kirillov, Jr., Alexander A.
TI - Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 102
IS - 2
SP - 179
EP - 202
LA - eng
KW - quantum groups; Macdonald's polynomials; symmetry identities
UR - http://eudml.org/doc/90452
ER -
References
top- [AI] Askey, R. and Ismail, Mourad E.-H.: A generalization of ultraspherical polynomials, Studies in Pure Math. (P. Erdös, ed.), Birkhäuser, 1983, pp. 55-78. Zbl0532.33006MR820210
- [C1] Cherednik, I.: Double affine Hecke algebras and Macdonald's conjectures, Annals of Math.141 (1995) 191-216. Zbl0822.33008MR1314036
- [C2] Cherednik, I.: Macdonald's evaluation conjectures and difference Fourier transform, preprint, December 1994, q-alg/9412016. Zbl0854.22021
- [CK] De Concini, C. and Kac, V.G.: Representations of quantum groups at roots of 1, Operator algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (A. Connes et al, eds.), Birkhäuser, 1990, pp. 471-506. Zbl0738.17008MR1103601
- [D] Drinfeld, V.G.: Quantum groups, Proc. Int. Congr. Math., Berkeley, 1986, pp. 798-820 Zbl0667.16003MR934283
- [EK1] Etingof, P.I. and Kirillov, A.A., Jr.: On a unified representation-theoretic approach to the theory of special functions, Funktsion. analiz i ego prilozh. 28 (1994) no. 1, 91-94 (in Russian). Zbl0868.33010MR1275729
- [EK2] Etingof, P.I. and Kirillov, A.A., Jr.: Macdonald's polynomials and representations of quantum groups, Math. Res. Let.1 (1994) no. 3, 279-296. Zbl0833.17007MR1302644
- [ES] Etingof, P.I. and Styrkas, K.: Algebraic integrability of Schrödinger operators and representations of Lie algebras, preprint, hep-th/9403135 (1994), to appear in Compositio Math. Zbl0861.17003MR1353287
- [J] Jimbo, M.A.: A q-difference analogue of Ug and the Yang-Baxter equation, Lett. Math. Phys.10 (1985) 62-69. Zbl0587.17004MR797001
- [L] Lusztig, G.: Introduction to quantum groups, Birkhäuser, Boston, 1993. Zbl0788.17010MR1227098
- [M1] Macdonald, I.G.: A new class of symmetric functions, Publ. I.R.M.A.Strasbourg, 372/S-20, Actes 20 Séminaire Lotharingien (1988), 131-171. Zbl0962.05507
- [M2] Macdonald, I.G.: Orthogonal polynomials associated with root systems, preprint (1988). MR1817334
- [RT1] Reshetikhin, N. and Turaev, V.: Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys.127 (1990) 1-26. Zbl0768.57003MR1036112
- [RT2] Reshetikhin, N. and Turaev, V.: Invariants of 3-manifolds via link polynomials and quantum groups, Inv. Math.103 (1991) 547-597. Zbl0725.57007MR1091619
- [T] Tanisaki, T.: Killing forms, Harish-Chandra isomorphisms and universal R-matrices for quantum algebras, Infinite Analysis, part A and part B (Kyoto, 1991), Adv. Ser. Math. Phys.17, World Scientific, pp. 941-961. Zbl0870.17007MR1187582
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.