On Siegel modular forms

Winfried Kohnen

Compositio Mathematica (1996)

  • Volume: 103, Issue: 2, page 219-226
  • ISSN: 0010-437X

How to cite

top

Kohnen, Winfried. "On Siegel modular forms." Compositio Mathematica 103.2 (1996): 219-226. <http://eudml.org/doc/90468>.

@article{Kohnen1996,
author = {Kohnen, Winfried},
journal = {Compositio Mathematica},
keywords = {Siegel modular forms; Deligne's theorem; Ramanujan-Petersson conjecture; modular forms of several variables; Fourier coefficients; theta series},
language = {eng},
number = {2},
pages = {219-226},
publisher = {Kluwer Academic Publishers},
title = {On Siegel modular forms},
url = {http://eudml.org/doc/90468},
volume = {103},
year = {1996},
}

TY - JOUR
AU - Kohnen, Winfried
TI - On Siegel modular forms
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 103
IS - 2
SP - 219
EP - 226
LA - eng
KW - Siegel modular forms; Deligne's theorem; Ramanujan-Petersson conjecture; modular forms of several variables; Fourier coefficients; theta series
UR - http://eudml.org/doc/90468
ER -

References

top
  1. 1 Böcherer, S.: Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math.45 (1984) 273-288. Zbl0533.10023MR734842
  2. 2 Böcherer, S. and Raghavan, S.: On Fourier coefficients of Siegel modular forms, J. Reine Angew. Math.384 (1988) 80-101. Zbl0636.10022MR929979
  3. 3 Böcherer, S.: Siegel modular forms and theta series, Proc. Sympos. Pure Maths. AMS, vol. 49, part 2 (1989) 3-17. Zbl0681.10019MR1013165
  4. 4 Böcherer, S. and Kohnen, W.: Estimates for Fourier coefficients of Siegel cusp forms, Math. Ann.297 (1993) 499-517. Zbl0787.11017MR1245401
  5. 5 Freitag, E.: Siegelsche Modulformen, Grundl. Math. Wiss. vol. 254, Springer, Berlin -Heidelberg-New York, 1983. Zbl0498.10016MR871067
  6. 6 Kashiwara, M. and Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math.84 (1978) 1—47. Zbl0375.22009
  7. 7 Kitaoka, Y.: Arithmetic of quadratic forms. Cambridge Texts in Maths, no. 106, Cambridge University Press, 1993. Zbl0785.11021MR1245266
  8. 8 Maass, H.: Harmonische Formen in einer Matrixvariablen, Math. Ann.252 (1980) 133-140. Zbl0427.31006MR593627
  9. 9 Raghavan, S.: Cusp forms of degree 2 and weight 3, Math. Ann.224 (1976) 149-156. Zbl0335.10030MR422163
  10. 10 Rankin, R.- A.: An Ω-result for the Fourier coefficients of cusp forms, Math. Ann.203 (1973) 239-250. Zbl0254.10021
  11. 11 Siegel, C.L.: Über die analytische Theorie der quadratischen Formen. In: Collected Works I (eds.: K. Chandrasekharan and H. Maass), pp. 326—405. Springer, Berlin-Heidelberg -New York, 1966. Zbl61.0140.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.