The reduction number of an algebra
Compositio Mathematica (1996)
- Volume: 104, Issue: 2, page 189-197
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVasconcelos, Wolmer V.. "The reduction number of an algebra." Compositio Mathematica 104.2 (1996): 189-197. <http://eudml.org/doc/90486>.
@article{Vasconcelos1996,
author = {Vasconcelos, Wolmer V.},
journal = {Compositio Mathematica},
keywords = {graded algebra; complexities; reduction number; Castelnuovo-Mumford regularity; arithmetic degree; Noether normalization},
language = {eng},
number = {2},
pages = {189-197},
publisher = {Kluwer Academic Publishers},
title = {The reduction number of an algebra},
url = {http://eudml.org/doc/90486},
volume = {104},
year = {1996},
}
TY - JOUR
AU - Vasconcelos, Wolmer V.
TI - The reduction number of an algebra
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 104
IS - 2
SP - 189
EP - 197
LA - eng
KW - graded algebra; complexities; reduction number; Castelnuovo-Mumford regularity; arithmetic degree; Noether normalization
UR - http://eudml.org/doc/90486
ER -
References
top- 1 Almkvist, G.: K-theory of endomorphisms, J. Algebra55 (1978) 308-340; Erratum, J. Algebra68 (1981) 520-521. Zbl0448.18007MR523461
- 2 Bayer, D. and Mumford, D.: What can be computed in Algebraic Geometry?, in Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona 1991 (D. Eisenbud and L. Robbiano, Eds.), Cambridge University Press, 1993, pp. 1—48. Zbl0846.13017
- 3 Bayer, D. and Stillman, M.: Macaulay: A system for computation in algebraic geometry and commutative algebra, 1992. Available via anonymous ftp from zariski. harvard. edu.
- 4 Bruns, W. and Herzog, J.: Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993. Zbl0788.13005MR1251956
- 5 Eisenbud, D. and Goto, S.: Linear free resolutions and minimal multiplicities, J. Algebra88 (1984) 89-133. Zbl0531.13015MR741934
- 6 Gräbe, H.-G.: Moduln Über Streckungsringen, Results in Mathematics15 (1989) 202-220. Zbl0694.13006MR997060
- 7 Gulliksen, T.H.: On the length of faithful modules over Artinian local rings, Math. Scand.31 (1972) 78-82. Zbl0247.13008MR314820
- 8 Hartshorne, R.: Connectedness of the Hilbert scheme, Publications Math. I.H.E.S.29 (1966) 261-304. Zbl0171.41502MR213368
- 9 Ooishi, A.: Castelnuovo's regularity of graded rings and modules, Hiroshima Math. J.12 (1982) 627-644. Zbl0557.13007MR676563
- 10 Schur, I.: Zur Theorie der Vertauschbären Matrizen, J. reine angew. Math.130 (1905) 66-76. Zbl36.0140.01JFM36.0140.01
- 11 Sjödin, G.: On filtered modules and their associated graded modules, Math. Scand.33 (1973) 229-249. Zbl0283.16018MR364351
- 12 Sturmfels, B., Trung, N.V. and Vogel, W.: Bounds on degrees of projective schemes, Math. Annalen302 (1995) 417-432. Zbl0828.14040MR1339920
- 13 Trung, N.V.: Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc.101 (1987) 229-236. Zbl0641.13016MR902533
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.