The reduction number of an algebra
Compositio Mathematica (1996)
- Volume: 104, Issue: 2, page 189-197
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- 1 Almkvist, G.: K-theory of endomorphisms, J. Algebra55 (1978) 308-340; Erratum, J. Algebra68 (1981) 520-521. Zbl0448.18007MR523461
- 2 Bayer, D. and Mumford, D.: What can be computed in Algebraic Geometry?, in Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona 1991 (D. Eisenbud and L. Robbiano, Eds.), Cambridge University Press, 1993, pp. 1—48. Zbl0846.13017
- 3 Bayer, D. and Stillman, M.: Macaulay: A system for computation in algebraic geometry and commutative algebra, 1992. Available via anonymous ftp from zariski. harvard. edu.
- 4 Bruns, W. and Herzog, J.: Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993. Zbl0788.13005MR1251956
- 5 Eisenbud, D. and Goto, S.: Linear free resolutions and minimal multiplicities, J. Algebra88 (1984) 89-133. Zbl0531.13015MR741934
- 6 Gräbe, H.-G.: Moduln Über Streckungsringen, Results in Mathematics15 (1989) 202-220. Zbl0694.13006MR997060
- 7 Gulliksen, T.H.: On the length of faithful modules over Artinian local rings, Math. Scand.31 (1972) 78-82. Zbl0247.13008MR314820
- 8 Hartshorne, R.: Connectedness of the Hilbert scheme, Publications Math. I.H.E.S.29 (1966) 261-304. Zbl0171.41502MR213368
- 9 Ooishi, A.: Castelnuovo's regularity of graded rings and modules, Hiroshima Math. J.12 (1982) 627-644. Zbl0557.13007MR676563
- 10 Schur, I.: Zur Theorie der Vertauschbären Matrizen, J. reine angew. Math.130 (1905) 66-76. Zbl36.0140.01JFM36.0140.01
- 11 Sjödin, G.: On filtered modules and their associated graded modules, Math. Scand.33 (1973) 229-249. Zbl0283.16018MR364351
- 12 Sturmfels, B., Trung, N.V. and Vogel, W.: Bounds on degrees of projective schemes, Math. Annalen302 (1995) 417-432. Zbl0828.14040MR1339920
- 13 Trung, N.V.: Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc.101 (1987) 229-236. Zbl0641.13016MR902533