A level-set approach for inverse problems involving obstacles

Fadil Santosa

ESAIM: Control, Optimisation and Calculus of Variations (1996)

  • Volume: 1, page 17-33
  • ISSN: 1292-8119

How to cite

top

Santosa, Fadil. "A level-set approach for inverse problems involving obstacles." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 17-33. <http://eudml.org/doc/90494>.

@article{Santosa1996,
author = {Santosa, Fadil},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {inverse problems; level-set method; Hamilton-Jacobi equations; surface evolution; optimization; deconvolution; diffraction},
language = {eng},
pages = {17-33},
publisher = {EDP Sciences},
title = {A level-set approach for inverse problems involving obstacles},
url = {http://eudml.org/doc/90494},
volume = {1},
year = {1996},
}

TY - JOUR
AU - Santosa, Fadil
TI - A level-set approach for inverse problems involving obstacles
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 17
EP - 33
LA - eng
KW - inverse problems; level-set method; Hamilton-Jacobi equations; surface evolution; optimization; deconvolution; diffraction
UR - http://eudml.org/doc/90494
ER -

References

top
  1. [1] MATLAB: High-performance numeric computation and visualization software - Refrence guide, MathWorks, Natick, MA, 1992. 
  2. [2] V. Casselles, F. Catté, T. Coll, and F. Dibos: A geometric model for active contours in image processing, Numerische Mathematik, 66, 1993, 1-31. Zbl0804.68159MR1240700
  3. [3] D. Colton and R. Kress: Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1992. Zbl0760.35053MR1183732
  4. [4] J. Dennis and R. Schnabel: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, 1983. Zbl0579.65058MR702023
  5. [5] A. Friedman: Detection of mines by electric measurements, SIAM J. Appl Math., 47, 1987, 201-212. Zbl0636.35084MR873244
  6. [6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi: Gradient flows and geometric active contour models, Proc. ICCV, Cambridge, 1995. 
  7. [7] R. LeVeque and Z. Li: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM ,L Num, Analysis, 31, 1994, 1019-1044. Zbl0811.65083MR1286215
  8. [8] R. Magnanini and G. Papi: An inverse problem for the helmholtz equation, Inverse Problems, 1, 1985, 357-370. Zbl0608.35076MR824135
  9. [9] R. Malladi, J. Sethian, and B. Vemuri: Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell., 17, 1995, 158-175. 
  10. [10] S. Osher and J. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 56, 1988, 12-49. Zbl0659.65132MR965860
  11. [11] M. Sondhi: Reconstruction of objects from their sound-diffraction patterns, J. Acoust. Soc. Am., 46, 1969, 1158-1164. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.