# A level-set approach for inverse problems involving obstacles

ESAIM: Control, Optimisation and Calculus of Variations (1996)

- Volume: 1, page 17-33
- ISSN: 1292-8119

## Access Full Article

top## How to cite

topSantosa, Fadil. "A level-set approach for inverse problems involving obstacles." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 17-33. <http://eudml.org/doc/90494>.

@article{Santosa1996,

author = {Santosa, Fadil},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {inverse problems; level-set method; Hamilton-Jacobi equations; surface evolution; optimization; deconvolution; diffraction},

language = {eng},

pages = {17-33},

publisher = {EDP Sciences},

title = {A level-set approach for inverse problems involving obstacles},

url = {http://eudml.org/doc/90494},

volume = {1},

year = {1996},

}

TY - JOUR

AU - Santosa, Fadil

TI - A level-set approach for inverse problems involving obstacles

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 1996

PB - EDP Sciences

VL - 1

SP - 17

EP - 33

LA - eng

KW - inverse problems; level-set method; Hamilton-Jacobi equations; surface evolution; optimization; deconvolution; diffraction

UR - http://eudml.org/doc/90494

ER -

## References

top- [1] MATLAB: High-performance numeric computation and visualization software - Refrence guide, MathWorks, Natick, MA, 1992.
- [2] V. Casselles, F. Catté, T. Coll, and F. Dibos: A geometric model for active contours in image processing, Numerische Mathematik, 66, 1993, 1-31. Zbl0804.68159MR1240700
- [3] D. Colton and R. Kress: Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1992. Zbl0760.35053MR1183732
- [4] J. Dennis and R. Schnabel: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, 1983. Zbl0579.65058MR702023
- [5] A. Friedman: Detection of mines by electric measurements, SIAM J. Appl Math., 47, 1987, 201-212. Zbl0636.35084MR873244
- [6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi: Gradient flows and geometric active contour models, Proc. ICCV, Cambridge, 1995.
- [7] R. LeVeque and Z. Li: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM ,L Num, Analysis, 31, 1994, 1019-1044. Zbl0811.65083MR1286215
- [8] R. Magnanini and G. Papi: An inverse problem for the helmholtz equation, Inverse Problems, 1, 1985, 357-370. Zbl0608.35076MR824135
- [9] R. Malladi, J. Sethian, and B. Vemuri: Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell., 17, 1995, 158-175.
- [10] S. Osher and J. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 56, 1988, 12-49. Zbl0659.65132MR965860
- [11] M. Sondhi: Reconstruction of objects from their sound-diffraction patterns, J. Acoust. Soc. Am., 46, 1969, 1158-1164.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.