A level-set approach for inverse problems involving obstacles
ESAIM: Control, Optimisation and Calculus of Variations (1996)
- Volume: 1, page 17-33
- ISSN: 1292-8119
Access Full Article
topHow to cite
topSantosa, Fadil. "A level-set approach for inverse problems involving obstacles." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 17-33. <http://eudml.org/doc/90494>.
@article{Santosa1996,
author = {Santosa, Fadil},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {inverse problems; level-set method; Hamilton-Jacobi equations; surface evolution; optimization; deconvolution; diffraction},
language = {eng},
pages = {17-33},
publisher = {EDP Sciences},
title = {A level-set approach for inverse problems involving obstacles},
url = {http://eudml.org/doc/90494},
volume = {1},
year = {1996},
}
TY - JOUR
AU - Santosa, Fadil
TI - A level-set approach for inverse problems involving obstacles
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 17
EP - 33
LA - eng
KW - inverse problems; level-set method; Hamilton-Jacobi equations; surface evolution; optimization; deconvolution; diffraction
UR - http://eudml.org/doc/90494
ER -
References
top- [1] MATLAB: High-performance numeric computation and visualization software - Refrence guide, MathWorks, Natick, MA, 1992.
- [2] V. Casselles, F. Catté, T. Coll, and F. Dibos: A geometric model for active contours in image processing, Numerische Mathematik, 66, 1993, 1-31. Zbl0804.68159MR1240700
- [3] D. Colton and R. Kress: Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1992. Zbl0760.35053MR1183732
- [4] J. Dennis and R. Schnabel: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, 1983. Zbl0579.65058MR702023
- [5] A. Friedman: Detection of mines by electric measurements, SIAM J. Appl Math., 47, 1987, 201-212. Zbl0636.35084MR873244
- [6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi: Gradient flows and geometric active contour models, Proc. ICCV, Cambridge, 1995.
- [7] R. LeVeque and Z. Li: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM ,L Num, Analysis, 31, 1994, 1019-1044. Zbl0811.65083MR1286215
- [8] R. Magnanini and G. Papi: An inverse problem for the helmholtz equation, Inverse Problems, 1, 1985, 357-370. Zbl0608.35076MR824135
- [9] R. Malladi, J. Sethian, and B. Vemuri: Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell., 17, 1995, 158-175.
- [10] S. Osher and J. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 56, 1988, 12-49. Zbl0659.65132MR965860
- [11] M. Sondhi: Reconstruction of objects from their sound-diffraction patterns, J. Acoust. Soc. Am., 46, 1969, 1158-1164.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.