Discrete feedback stabilization of semilinear control systems

Lars Grüne

ESAIM: Control, Optimisation and Calculus of Variations (1996)

  • Volume: 1, page 207-224
  • ISSN: 1292-8119

How to cite

top

Grüne, Lars. "Discrete feedback stabilization of semilinear control systems." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 207-224. <http://eudml.org/doc/90496>.

@article{Grüne1996,
author = {Grüne, Lars},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {stabilization; exponential stabilizability; discounted optimal control; piecewise constant control},
language = {eng},
pages = {207-224},
publisher = {EDP Sciences},
title = {Discrete feedback stabilization of semilinear control systems},
url = {http://eudml.org/doc/90496},
volume = {1},
year = {1996},
}

TY - JOUR
AU - Grüne, Lars
TI - Discrete feedback stabilization of semilinear control systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 207
EP - 224
LA - eng
KW - stabilization; exponential stabilizability; discounted optimal control; piecewise constant control
UR - http://eudml.org/doc/90496
ER -

References

top
  1. [1] A. Bacciotti: Local Stabilizability of Nonlinear Control Systems, World Scientific, Singapore, 1992. Zbl0757.93061MR1148363
  2. [2] R.W. Brockett: Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, R.W. Brockett, R.S. Millman, and H.J. Sussmann, eds., 181-191, Birkhäuser, Boston, 1983. Zbl0528.93051MR708502
  3. [3] I. Capuzzo Dolcetta and M. Falcone: Discrete dynamic programming and viscosity solutions of the Bellman equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (supplément), 1989, 161-184. Zbl0674.49028MR1019113
  4. [4] I. Capuzzo Dolcetta and H. Ishii: Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11, 1984, 161-181. Zbl0553.49024MR743925
  5. [5] R. Chabour, G. Sallet, and J. Vivalda: Stabilization of nonlinear systems: A bilinear approach, Math. Control Signals Syst., 6, 1993, 224-246. Zbl0797.93038MR1358071
  6. [6] F. Clarke, Y. Ledyaev, E. Sontag, and A. Subbotin: Asymptotic controllability and feedback stabilization, in Proc. Conf. on Information Sciences and Systems (CISS 96), Princeton, NJ, 1996. To appear, full version submitted. Zbl0892.93053
  7. [7] B. D. Coller, P. Holmes, and J. L. Lumley: Control of bursting in boundary layer models, Appl. Mech. Rev., 47, 1994, 139-143. 
  8. [8] F. Colonius and W. Kliemann: Linear control semigroups acting on projective space, J. Dyn. Differ. Equations, 5, 1993, 495-528. Zbl0784.34049MR1235040
  9. [9] F. Colonius and W. Kliemann, Maximal and minimal Lyapunov exponents of bilinear control systems, J. Differ. Equations, 101, 1993, 232-275. Zbl0769.34037MR1204328
  10. [10] F. Colonius and W. Kliemann, Asymptotic null controllability of bilinear systems, in Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications Vol. 32, Warsaw, 1995, 139-148. Zbl0837.93050MR1364425
  11. [11] M. Falcone: A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim., 15, 1987, 1-13. Corrigenda, ibid. 23, 1991, 213-214. Zbl0715.49025MR866164
  12. [12] M. Falcone and R. Ferretti: Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67, 1994, 315-344. Zbl0791.65046MR1269500
  13. [13] L. Grüne: An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numer. Math., 1996. To appear. Zbl0880.65045MR1427711
  14. [14] L. Grüne, Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 1996. To appear. Zbl0876.93032MR1416498
  15. [15] H. Hermes: On stabilizing feedback attitude control, J. Optimization Theory Appl., 31, 1980, 373-384. Zbl0417.93060MR600064
  16. [16] H. Hermes, On the synthesis of stabilizing feedback control via Lie algebraic methods, SIAM J. Control Optim., 18, 1980, 352-361. Zbl0477.93046MR579546
  17. [17] A. Isidori: Nonlinear Control systems: An Introduction, Springer Verlag, Berlin, 1989. Zbl0569.93034MR1229759
  18. [18] N.N. Krasovski&#x012D; and A.I. Subbotin: Game-Theoretical Control Problems, Springer Verlag, New York, 1988. Zbl0649.90101
  19. [19] P.-L. Lions: Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982. Zbl0497.35001MR667669
  20. [20] E.D. Sontag: Nonlinear regulation: The piecewise linear approach, IEEE Trans. Autom. Control, AC-26, 1981, 346-358. Zbl0474.93039MR613541
  21. [21] E.D. Sontag: Feedback stabilization using two-hidden-layer nets, IEEE Trans. Neural Networks, 3, 1992, 981-990. 
  22. [22] N. Sri Namachchivaya and H.J. Van Roessel: Maximal Lyapunov exponents and rotation numbers for two coupled oscillators driven by real noise, J. Stat. Phys., 71, 1993, 549-567. Zbl0945.60503MR1219022
  23. [23] J. Stoer and R. Bulirsch: Introduction to Numerical Analysis, Springer Verlag, New York, 1980. Zbl0423.65002MR557543

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.