The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations
M. I. Belishev; V. Yu. Gotlib; S. A. Ivanov
ESAIM: Control, Optimisation and Calculus of Variations (1997)
- Volume: 2, page 307-327
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBelishev, M. I., Gotlib, V. Yu., and Ivanov, S. A.. "The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 307-327. <http://eudml.org/doc/90509>.
@article{Belishev1997,
author = {Belishev, M. I., Gotlib, V. Yu., Ivanov, S. A.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {boundary control method; multidimensional spectral inverse problem; algorithm},
language = {eng},
pages = {307-327},
publisher = {EDP Sciences},
title = {The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations},
url = {http://eudml.org/doc/90509},
volume = {2},
year = {1997},
}
TY - JOUR
AU - Belishev, M. I.
AU - Gotlib, V. Yu.
AU - Ivanov, S. A.
TI - The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 307
EP - 327
LA - eng
KW - boundary control method; multidimensional spectral inverse problem; algorithm
UR - http://eudml.org/doc/90509
ER -
References
top- [1] Avdonin S. A., Belishev M. I., Ivanov S. A.: The controllability in a filled domain for multidimensional wave equation with a singular boundary control. Zap. Nauch. Sem. POMI, 210 (23), 1994, 7-21 (in Russian). Zbl0870.93004MR1334739
- [2] Bardos C., Belishev M.I.: The Wave Shaping Problem. Proceedings of the Colloquium in the Memory of P. Grisvard, Paris, December 1994. Zbl0858.35011
- [3] Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control and Optimization, 30 (5), 1992, 1024-1065. Zbl0786.93009MR1178650
- [4] Bateman H., Erdelyi A.: Higher Transcendental Functions. V.3, N.Y., Mc Graw Hill, 1955. Zbl0064.06302MR66496
- [5] Belishev M.I.: An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR, 297 (3), 1987, 524-527; English transl. in Soviet Math. Dokl. 36 (3), 1988, 481-484. Zbl0661.35084MR924687
- [6] Belishev M.I.: Wave bases in multidimensional inverse problems. Math. USSR Sbornik, 180 (5), 1989, 584-602. Zbl0698.35164MR1007464
- [7] Belishev M.I.: Boundary control and wave field continuation. Preprint POMI P-l-90, 1990, 1-41 (in Russian).
- [8] Belishev M.I., Kachalov A.P.: Boundary control and quasiphotons in the problem of reconstruction of a Riemannian manifold via dynamical data. Zapiski Nauchn. Seminarov POMI, 203 (22), 1992, 21-50 (in Russian). Zbl0800.93603MR1193677
- [9] Belishev M.I., Kachalov A.P.: An operator integral in multidimensional spectral Inverse Problem. Zapiski Nauchn. Seminarov POMI, 215 (14), 1994, 9-37 (in Russian). Zbl0916.46033
- [10] Belishev M.I., Kurylev Ya.V.: Boundary control, wave field continuation and inverse problems for the wave equation. Computer Math. Applic., 22, (4-5), 1991, 27-52. Zbl0768.35077MR1127213
- [11] Belishev M.I., Kurylev Ya.V.: To a reconstruction of a Riemannian manifold via its spectral data (BC-method). Comm. PDE, 17, (5-6), 1992, 767-804. Zbl0812.58094MR1177292
- [12] Belishev M.I., Ryzhov V.A., Filippov V.B.: Spectral variant of the BC-method: theory and numerical testing. Dokl. Ross. Akad. Nauk, 332 (4), 1994, 414-417. English translation in POMI Preprint 1-1994. Zbl0842.35132MR1301633
- [13] Berezanskii Yu. M.: To the uniqueness in the inverse spectral problem for Schrödinger operator. Proceedings of Moscow Math. Soc. 7 (3) 1958, 3-51 (in Russian).
- [14] Gromol D., Klingenberg W., Meyer W.: Riemannsche Geometrie im Grossen. Springer-Verlag, 1968. Zbl0155.30701MR229177
- [15] Hartman P.: Geodesic parallel coordinates in the large. Amer. Math. Soc., 86 (4), 1964, 705-727. Zbl0128.16105MR173222
- [16] Hörmander L.: The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators. Springer-Verlag, 1985. Zbl0601.35001
- [17] Hörmander L.: A uniqueness theorem for second order hyperbolic differential equation. Comm. PDE, 17 (5-6), 1992, 699-314. Zbl0815.35063MR1177289
- [18] Krein M.G.: On one method of efficient solving of inverse problem. Dokl. Akad. Nauk SSSR, 94 (6), 1954, 987-990 (in Russian). MR62904
- [19] Lasiecka I., Lions J.-L., Triggiani R.: Nonhomogeneous boundary value problem for second order hyperbolic operator. J. Math. Pures et Appl. 65 (2), 1986, 149-192. Zbl0631.35051MR867669
- [20] Lions J.-L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod-Gauthier-Villars. Paris, 1968. Zbl0179.41801MR244606
- [21] Nachman R.: Reconstructions from boundary measurements. Ann. Math., 128, 1988, 531-576. Zbl0675.35084MR970610
- [22] Novikov R.: A multidimensional inverse spectral problem for the equation - ∆ ˉ + (v(x) - Eu(x))ˉ = 0, Funktsional, Anal. i Prilozhen, 22 (4), 1988, 11-22, translated in Functional Anal. Appl., 22 (4), 1988, 263-272. Zbl0689.35098MR976992
- [23] Novikov R., Henkin G.: ∂-equation in multidimensional inverse scattering problem, Uspekhi Matem Nauk, 42 (3), 1987, 94-152 (in Russian). Translated in Math. Surv., 42 (4), 1987, 109-180. Zbl0674.35085MR896879
- [24] Robbiano L.: Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. PDE, 16 (4-5), 1991, 789-800. Zbl0735.35086MR1113107
- [25] Russell D. L.: Controllability and stabilizability theory for linear partial differential equations. SIAM Review, 20 (4), 1978, 639-739. Zbl0397.93001MR508380
- [26] Sylvester J., Uhlmann G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39, 1986, 91-112. Zbl0611.35088MR820341
- [27] Tataru D.: Unique continuation for solutions of PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. PDE, 20, 1995, 855-884. Zbl0846.35021MR1326909
- [28] Wainberg B.R.: Asymptotic Methods in Equations of Mathematical Physics. Moscow, Nauka (in Russian), 1982. Zbl0743.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.