The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations

M. I. Belishev; V. Yu. Gotlib; S. A. Ivanov

ESAIM: Control, Optimisation and Calculus of Variations (1997)

  • Volume: 2, page 307-327
  • ISSN: 1292-8119

How to cite

top

Belishev, M. I., Gotlib, V. Yu., and Ivanov, S. A.. "The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 307-327. <http://eudml.org/doc/90509>.

@article{Belishev1997,
author = {Belishev, M. I., Gotlib, V. Yu., Ivanov, S. A.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {boundary control method; multidimensional spectral inverse problem; algorithm},
language = {eng},
pages = {307-327},
publisher = {EDP Sciences},
title = {The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations},
url = {http://eudml.org/doc/90509},
volume = {2},
year = {1997},
}

TY - JOUR
AU - Belishev, M. I.
AU - Gotlib, V. Yu.
AU - Ivanov, S. A.
TI - The BC-method in multidimensional spectral inverse problem : theory and numerical illustrations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 307
EP - 327
LA - eng
KW - boundary control method; multidimensional spectral inverse problem; algorithm
UR - http://eudml.org/doc/90509
ER -

References

top
  1. [1] Avdonin S. A., Belishev M. I., Ivanov S. A.: The controllability in a filled domain for multidimensional wave equation with a singular boundary control. Zap. Nauch. Sem. POMI, 210 (23), 1994, 7-21 (in Russian). Zbl0870.93004MR1334739
  2. [2] Bardos C., Belishev M.I.: The Wave Shaping Problem. Proceedings of the Colloquium in the Memory of P. Grisvard, Paris, December 1994. Zbl0858.35011
  3. [3] Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control and Optimization, 30 (5), 1992, 1024-1065. Zbl0786.93009MR1178650
  4. [4] Bateman H., Erdelyi A.: Higher Transcendental Functions. V.3, N.Y., Mc Graw Hill, 1955. Zbl0064.06302MR66496
  5. [5] Belishev M.I.: An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR, 297 (3), 1987, 524-527; English transl. in Soviet Math. Dokl. 36 (3), 1988, 481-484. Zbl0661.35084MR924687
  6. [6] Belishev M.I.: Wave bases in multidimensional inverse problems. Math. USSR Sbornik, 180 (5), 1989, 584-602. Zbl0698.35164MR1007464
  7. [7] Belishev M.I.: Boundary control and wave field continuation. Preprint POMI P-l-90, 1990, 1-41 (in Russian). 
  8. [8] Belishev M.I., Kachalov A.P.: Boundary control and quasiphotons in the problem of reconstruction of a Riemannian manifold via dynamical data. Zapiski Nauchn. Seminarov POMI, 203 (22), 1992, 21-50 (in Russian). Zbl0800.93603MR1193677
  9. [9] Belishev M.I., Kachalov A.P.: An operator integral in multidimensional spectral Inverse Problem. Zapiski Nauchn. Seminarov POMI, 215 (14), 1994, 9-37 (in Russian). Zbl0916.46033
  10. [10] Belishev M.I., Kurylev Ya.V.: Boundary control, wave field continuation and inverse problems for the wave equation. Computer Math. Applic., 22, (4-5), 1991, 27-52. Zbl0768.35077MR1127213
  11. [11] Belishev M.I., Kurylev Ya.V.: To a reconstruction of a Riemannian manifold via its spectral data (BC-method). Comm. PDE, 17, (5-6), 1992, 767-804. Zbl0812.58094MR1177292
  12. [12] Belishev M.I., Ryzhov V.A., Filippov V.B.: Spectral variant of the BC-method: theory and numerical testing. Dokl. Ross. Akad. Nauk, 332 (4), 1994, 414-417. English translation in POMI Preprint 1-1994. Zbl0842.35132MR1301633
  13. [13] Berezanskii Yu. M.: To the uniqueness in the inverse spectral problem for Schrödinger operator. Proceedings of Moscow Math. Soc. 7 (3) 1958, 3-51 (in Russian). 
  14. [14] Gromol D., Klingenberg W., Meyer W.: Riemannsche Geometrie im Grossen. Springer-Verlag, 1968. Zbl0155.30701MR229177
  15. [15] Hartman P.: Geodesic parallel coordinates in the large. Amer. Math. Soc., 86 (4), 1964, 705-727. Zbl0128.16105MR173222
  16. [16] Hörmander L.: The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators. Springer-Verlag, 1985. Zbl0601.35001
  17. [17] Hörmander L.: A uniqueness theorem for second order hyperbolic differential equation. Comm. PDE, 17 (5-6), 1992, 699-314. Zbl0815.35063MR1177289
  18. [18] Krein M.G.: On one method of efficient solving of inverse problem. Dokl. Akad. Nauk SSSR, 94 (6), 1954, 987-990 (in Russian). MR62904
  19. [19] Lasiecka I., Lions J.-L., Triggiani R.: Nonhomogeneous boundary value problem for second order hyperbolic operator. J. Math. Pures et Appl. 65 (2), 1986, 149-192. Zbl0631.35051MR867669
  20. [20] Lions J.-L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod-Gauthier-Villars. Paris, 1968. Zbl0179.41801MR244606
  21. [21] Nachman R.: Reconstructions from boundary measurements. Ann. Math., 128, 1988, 531-576. Zbl0675.35084MR970610
  22. [22] Novikov R.: A multidimensional inverse spectral problem for the equation - ∆ ˉ + (v(x) - Eu(x))ˉ = 0, Funktsional, Anal. i Prilozhen, 22 (4), 1988, 11-22, translated in Functional Anal. Appl., 22 (4), 1988, 263-272. Zbl0689.35098MR976992
  23. [23] Novikov R., Henkin G.: ∂-equation in multidimensional inverse scattering problem, Uspekhi Matem Nauk, 42 (3), 1987, 94-152 (in Russian). Translated in Math. Surv., 42 (4), 1987, 109-180. Zbl0674.35085MR896879
  24. [24] Robbiano L.: Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. PDE, 16 (4-5), 1991, 789-800. Zbl0735.35086MR1113107
  25. [25] Russell D. L.: Controllability and stabilizability theory for linear partial differential equations. SIAM Review, 20 (4), 1978, 639-739. Zbl0397.93001MR508380
  26. [26] Sylvester J., Uhlmann G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39, 1986, 91-112. Zbl0611.35088MR820341
  27. [27] Tataru D.: Unique continuation for solutions of PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. PDE, 20, 1995, 855-884. Zbl0846.35021MR1326909
  28. [28] Wainberg B.R.: Asymptotic Methods in Equations of Mathematical Physics. Moscow, Nauka (in Russian), 1982. Zbl0743.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.