Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics

Pascal Morin; Claude Samson

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 1-35
  • ISSN: 1292-8119

How to cite

top

Morin, Pascal, and Samson, Claude. "Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 1-35. <http://eudml.org/doc/90534>.

@article{Morin1999,
author = {Morin, Pascal, Samson, Claude},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {affine control system; robust exponential stability; feedback time-dependent control; periodic control; robust stabilization},
language = {eng},
pages = {1-35},
publisher = {EDP Sciences},
title = {Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics},
url = {http://eudml.org/doc/90534},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Morin, Pascal
AU - Samson, Claude
TI - Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 1
EP - 35
LA - eng
KW - affine control system; robust exponential stability; feedback time-dependent control; periodic control; robust stabilization
UR - http://eudml.org/doc/90534
ER -

References

top
  1. [1] M.K. Bennani and P. Rouchon, Robust stabilization of flat and chained systems, in European Control Conference (ECC) ( 1995) 2642-2646. 
  2. [2] R.W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, R.S. Millman R.W. Brockett and H.H. Sussmann Eds., Birkauser ( 1983). Zbl0528.93051MR708502
  3. [3] C. Canudas de Wit and O. J. Sørdalen, Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 37 ( 1992) 1791-1797. Zbl0778.93077MR1195224
  4. [4] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples. Internat. J. Control 61 ( 1995) 1327-1361. Zbl0838.93022MR1613557
  5. [5] H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 ( 1991) 238-264. Zbl0733.93062MR1108590
  6. [6] A. Isidori, Nonlinear control systems. Springer Verlag, third edition ( 1995). Zbl0569.93034MR1410988
  7. [7] M. Kawski, Geometric homogeneity and stabilization, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) ( 1995) 164-169. 
  8. [8] I. Kolmanovsky and N.H. McClamroch, Developments in nonholonomic control problems. IEEE Control Systems ( 1995) 20-36. 
  9. [9] J. Kurzweil and J. Jarnik, Iterated lie brackets in limit processes in ordinary differential equations. Results in Mathematics 14 ( 1988) 125-137. Zbl0663.34043MR956009
  10. [10] Z. Li and J.F. Canny, Nonholonomic motion planning. Kluwer Academic Press ( 1993). Zbl0875.00053
  11. [11] W. Liu, An approximation algorithm for nonholonomic systems. SIAM J. Contr. Opt. 35 ( 19971328-1365. Zbl0887.34063MR1453301
  12. [12] D.A. Lizárraga, P. Morin and C. Samson, Non-robustness of continuous homogeneous stabilizers for affine systems. Technical Report 3508, INRIA ( 1998) Available at http://www.inria.fr/RRRT/RR-3508.html 
  13. [13] R.T. M'Closkey and R.M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Contr. 42 ( 1997) 614-628. Zbl0882.93066MR1454204
  14. [14] S. Monaco and D. Normand-Cyrot, An introduction to motion planning using multirate digital control, in IEEE Conf. on Decision and Control (CDC) ( 1991) 1780-1785. 
  15. [15] P. Morin, J.-B. Pomet and C. Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. Contr. Opt. (to appear). Zbl0938.93055MR1740609
  16. [16] P. Morin, J.-B. Pomet and C. Samson, Developments in time-varying feedback stabilization of nonlinear systems, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) ( 1998) 587-594. 
  17. [17] P. Morin and C. Samson, Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Technical Report 3477, INRIA ( 1998). Zbl0919.93059
  18. [18] R.M. Murray and S.S. Sastry, Nonholonomic motion planning: Steering using sinusoids. EEE Trans. Automat. Contr. 38 ( 1993) 700-716. Zbl0800.93840MR1224308
  19. [19] L. Rosier, Étude de quelques problèmes de stabilisation. PhD thesis, École Normale de Cachan ( 1993). 
  20. [20] C. Samson, Velocity and torque feedback control of a nonholonomic cart, in Int. Workshop in Adaptative and Nonlinear Control: Issues in Robotics. LNCIS, Vol. 162, Springer Verlag, 1991 ( 1990). Zbl0800.93910MR1180972
  21. [21] O.J. Sørdalen and O. Egeland, Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Contr. 40 ( 1995) 35-49. Zbl0828.93055MR1344316
  22. [22] G. Stefani, Polynomial approximations to control systems and local controllability, in IEEE Conf. on Decision and Control (CDC) ( 1985) 33-38. 
  23. [23] G. Stefani, On the local controllability of scalar-input control systems, in Theory and Applications of Nonlinear Control Systems, Proc. of MTNS'84, C.I. Byrnes and A. Linsquist Eds., North-Holland ( 1986) 167-179. Zbl0603.93006MR935375
  24. [24] H.J. Sussmann and W. Liu, Limits of highly oscillatory controls ans approximation of general paths by admissible trajectories, in IEEE Conf. on Decision and Control (CDC) ( 1991) 437-442. 
  25. [25] H.J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Contr. Opt. 21 ( 1983) 686-713. Zbl0523.49026MR710995
  26. [26] H.J. Sussmann, A general theorem on local controllability. SIAM J. Contr. Opt. 25 ( 1987) 158-194. Zbl0629.93012MR872457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.