Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics
ESAIM: Control, Optimisation and Calculus of Variations (1999)
- Volume: 4, page 1-35
- ISSN: 1292-8119
Access Full Article
topHow to cite
topMorin, Pascal, and Samson, Claude. "Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 1-35. <http://eudml.org/doc/90534>.
@article{Morin1999,
author = {Morin, Pascal, Samson, Claude},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {affine control system; robust exponential stability; feedback time-dependent control; periodic control; robust stabilization},
language = {eng},
pages = {1-35},
publisher = {EDP Sciences},
title = {Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics},
url = {http://eudml.org/doc/90534},
volume = {4},
year = {1999},
}
TY - JOUR
AU - Morin, Pascal
AU - Samson, Claude
TI - Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 1
EP - 35
LA - eng
KW - affine control system; robust exponential stability; feedback time-dependent control; periodic control; robust stabilization
UR - http://eudml.org/doc/90534
ER -
References
top- [1] M.K. Bennani and P. Rouchon, Robust stabilization of flat and chained systems, in European Control Conference (ECC) ( 1995) 2642-2646.
- [2] R.W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, R.S. Millman R.W. Brockett and H.H. Sussmann Eds., Birkauser ( 1983). Zbl0528.93051MR708502
- [3] C. Canudas de Wit and O. J. Sørdalen, Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 37 ( 1992) 1791-1797. Zbl0778.93077MR1195224
- [4] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples. Internat. J. Control 61 ( 1995) 1327-1361. Zbl0838.93022MR1613557
- [5] H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 ( 1991) 238-264. Zbl0733.93062MR1108590
- [6] A. Isidori, Nonlinear control systems. Springer Verlag, third edition ( 1995). Zbl0569.93034MR1410988
- [7] M. Kawski, Geometric homogeneity and stabilization, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) ( 1995) 164-169.
- [8] I. Kolmanovsky and N.H. McClamroch, Developments in nonholonomic control problems. IEEE Control Systems ( 1995) 20-36.
- [9] J. Kurzweil and J. Jarnik, Iterated lie brackets in limit processes in ordinary differential equations. Results in Mathematics 14 ( 1988) 125-137. Zbl0663.34043MR956009
- [10] Z. Li and J.F. Canny, Nonholonomic motion planning. Kluwer Academic Press ( 1993). Zbl0875.00053
- [11] W. Liu, An approximation algorithm for nonholonomic systems. SIAM J. Contr. Opt. 35 ( 19971328-1365. Zbl0887.34063MR1453301
- [12] D.A. Lizárraga, P. Morin and C. Samson, Non-robustness of continuous homogeneous stabilizers for affine systems. Technical Report 3508, INRIA ( 1998) Available at http://www.inria.fr/RRRT/RR-3508.html
- [13] R.T. M'Closkey and R.M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Contr. 42 ( 1997) 614-628. Zbl0882.93066MR1454204
- [14] S. Monaco and D. Normand-Cyrot, An introduction to motion planning using multirate digital control, in IEEE Conf. on Decision and Control (CDC) ( 1991) 1780-1785.
- [15] P. Morin, J.-B. Pomet and C. Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. Contr. Opt. (to appear). Zbl0938.93055MR1740609
- [16] P. Morin, J.-B. Pomet and C. Samson, Developments in time-varying feedback stabilization of nonlinear systems, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) ( 1998) 587-594.
- [17] P. Morin and C. Samson, Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Technical Report 3477, INRIA ( 1998). Zbl0919.93059
- [18] R.M. Murray and S.S. Sastry, Nonholonomic motion planning: Steering using sinusoids. EEE Trans. Automat. Contr. 38 ( 1993) 700-716. Zbl0800.93840MR1224308
- [19] L. Rosier, Étude de quelques problèmes de stabilisation. PhD thesis, École Normale de Cachan ( 1993).
- [20] C. Samson, Velocity and torque feedback control of a nonholonomic cart, in Int. Workshop in Adaptative and Nonlinear Control: Issues in Robotics. LNCIS, Vol. 162, Springer Verlag, 1991 ( 1990). Zbl0800.93910MR1180972
- [21] O.J. Sørdalen and O. Egeland, Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Contr. 40 ( 1995) 35-49. Zbl0828.93055MR1344316
- [22] G. Stefani, Polynomial approximations to control systems and local controllability, in IEEE Conf. on Decision and Control (CDC) ( 1985) 33-38.
- [23] G. Stefani, On the local controllability of scalar-input control systems, in Theory and Applications of Nonlinear Control Systems, Proc. of MTNS'84, C.I. Byrnes and A. Linsquist Eds., North-Holland ( 1986) 167-179. Zbl0603.93006MR935375
- [24] H.J. Sussmann and W. Liu, Limits of highly oscillatory controls ans approximation of general paths by admissible trajectories, in IEEE Conf. on Decision and Control (CDC) ( 1991) 437-442.
- [25] H.J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Contr. Opt. 21 ( 1983) 686-713. Zbl0523.49026MR710995
- [26] H.J. Sussmann, A general theorem on local controllability. SIAM J. Contr. Opt. 25 ( 1987) 158-194. Zbl0629.93012MR872457
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.