Control norms for large control times

Sergei Ivanov

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 405-418
  • ISSN: 1292-8119

How to cite

top

Ivanov, Sergei. "Control norms for large control times." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 405-418. <http://eudml.org/doc/90547>.

@article{Ivanov1999,
author = {Ivanov, Sergei},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Controllability; families of exponentials; biorthogonal functions; Riesz bases},
language = {eng},
pages = {405-418},
publisher = {EDP Sciences},
title = {Control norms for large control times},
url = {http://eudml.org/doc/90547},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Ivanov, Sergei
TI - Control norms for large control times
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 405
EP - 418
LA - eng
KW - Controllability; families of exponentials; biorthogonal functions; Riesz bases
UR - http://eudml.org/doc/90547
ER -

References

top
  1. [1] M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - a numerical study. ESAIM: Contr., Optim. Cal. Var. 3 ( 1998) 163-212. Zbl1052.93501MR1624783
  2. [2] S. Avdonin and S. Ivanov, Families of Exponentials. The Method od Moments in Controllability Problems for Distributed Parameter systemsCambridge University Press, N.Y. ( 1995). Zbl0866.93001MR1366650
  3. [3] S.A. Avdonin, M.I. Belishev and S.A. Ivanov, Controllability in filled domain for the multidimensional wave equation with singular boundary control. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 210 ( 1994) 7-21. Zbl0870.93004MR1334739
  4. [4] S.A. Avdonin, S.A. Ivanov and D.L. Russell, Exponential bases in Sobolev spaces in control and observation problems for the wave equation. Proc. Roy. Soc. Edinburgh (to be submitted). Zbl0935.35014
  5. [5] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Theor. Appl. 30 ( 1992) 1024-1095. Zbl0786.93009MR1178650
  6. [6] H.O. Fattorini, Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, Springer, Lecture Notes in Control and Information Sciences 2 ( 1979). Zbl0379.93030MR490213
  7. [7] R. Glowinski, C.-H. Li and J.-L. Lions, A numerical approach to the exact controllability of the wave equation. (I) Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7 ( 1990) 1-76. Zbl0699.65055MR1039237
  8. [8] F. Gozzi and P. Loreti, Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. (to appear). Zbl0958.49014MR1691938
  9. [9] W. Krabs, On Moment Theory and Controllability of one-dimensional vibrating Systems and Heating Processes, Springer, Lecture Notes in Control and Information Sciences 173 ( 1992). Zbl0955.93501MR1162111
  10. [10] W. Krabs, G. Leugering and T. Seidman, On boundary controllability of a vibrating plate. Appl. Math. Optim. 13 ( 1985) 205-229. Zbl0596.49025MR806626
  11. [11] I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 ( 1986) 149-192. Zbl0631.35051MR867669
  12. [12] J.-L. Lions, Contrôviabilité exacte, stabilisation et perturbation des systèmes distribués, Masson, Paris Collection RMA 1 ( 1988). 
  13. [13] N.K. Nikol'skiĭ, A Treatise on the Shift Operator, Springer, Berlin ( 1986). MR827223
  14. [14] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev. 20 ( 1978) 639-739. Zbl0397.93001MR508380
  15. [15] T.I. Seidman, The coefficient map for certain exponential sums. Nederl. Akad. Wetensch. Proc. Ser. A 89 (= Indag. Math. 48) ( 1986) 463-468. Zbl0627.42002MR869762
  16. [16] T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The "window problem" for complex exponentials. Fourier Analysis and Applications (to appear). Zbl0960.42012
  17. [17] D. Tataru, Unique continuation for solutions of PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. PDE 20 ( 1995) 855-884. Zbl0846.35021MR1326909

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.