Stability results for some nonlinear elliptic equations involving the -laplacian with critical Sobolev growth
ESAIM: Control, Optimisation and Calculus of Variations (1999)
- Volume: 4, page 559-575
- ISSN: 1292-8119
Access Full Article
topHow to cite
topNazaret, Bruno. "Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 559-575. <http://eudml.org/doc/90554>.
@article{Nazaret1999,
author = {Nazaret, Bruno},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {perturbation; viscosity term; best constant problem in Sobolev inequalities},
language = {eng},
pages = {559-575},
publisher = {EDP Sciences},
title = {Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth},
url = {http://eudml.org/doc/90554},
volume = {4},
year = {1999},
}
TY - JOUR
AU - Nazaret, Bruno
TI - Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 559
EP - 575
LA - eng
KW - perturbation; viscosity term; best constant problem in Sobolev inequalities
UR - http://eudml.org/doc/90554
ER -
References
top- [1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11 ( 1976) 573-598. Zbl0371.46011MR448404
- [2] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere equations, Springer-Verlag ( 1982) (Grundlehren) 252. Zbl0512.53044MR681859
- [3] O. Druet, Generalized scalar curvature type equations on compact riemaniann manifolds. Preprint of the University of Cergy-Pontoise ( 1997). MR1649975
- [4] F. Demengel and E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. Adv. in PDE's, to appear. Zbl0955.35031MR1659246
- [5] P. Courilleau and F. Demengel, On the heat flow for p-harmonic maps with values in S1. Nonlinear Anal. TMA, accepted. Zbl0979.35082
- [6] M. Guedda and L. Veron, Local and global properties of solutions of quasilinear elliptic equations. J. Differential Equations 76 ( 1988) 159-189. Zbl0661.35029MR964617
- [7] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponentsNonlinear Analysis, Theory, Methods and Applications 13 ( 1989) 879-902. Zbl0714.35032MR1009077
- [8] E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth. J. Funct. Anal. 119 ( 1994) 298-318. Zbl0798.35052MR1261094
- [9] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences 74 ( 1990). Zbl0698.35004MR1034481
- [10] E. Hebey, La methode d'isométries-concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de sobolev. Bull. Sci. Math. 116 ( 1992) 35-51. Zbl0756.35028MR1154371
- [11] E. Hebey, Sobolev Spaces on Riemannian Manifolds, Springer-Verlag ( 1996) (LNM) 1635. Zbl0866.58068MR1481970
- [12] A. Jourdain, Solutions nodales pour des équations de type courbure scalaire sur la sphère. Preprint of the University of Cergy-Pontoise ( 1997).
- [13] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part I. Revista Matematica Iberoamericana 1 ( 1985) 145-199. Zbl0704.49005MR834360
- [14] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part II. Revista Matematica Iberoamericana 1 ( 1985) 45-116. Zbl0704.49006MR850686
- [15] B. Nazaret, Stabilité sous des perturbations visqueuses des solutions d'équations du type p-Laplacien avec exposant critique de Sobolev. Preprint of the University of Cergy-Pontoise (5/98).
- [16] G. Talenti. Best constants in Sobolev inequalities. Ann. Mat. Pura Appl. 110 ( 1976) 353-372. Zbl0353.46018MR463908
- [17] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 ( 1984) 126-150. Zbl0488.35017MR727034
- [18] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 ( 1984) 191-202. Zbl0561.35003MR768629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.