Optimal control of semilinear parabolic equations with state-constraints of bottleneck type

Maïtine Bergounioux; Fredi Tröltzsch

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 595-608
  • ISSN: 1292-8119

How to cite

top

Bergounioux, Maïtine, and Tröltzsch, Fredi. "Optimal control of semilinear parabolic equations with state-constraints of bottleneck type." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 595-608. <http://eudml.org/doc/90557>.

@article{Bergounioux1999,
author = {Bergounioux, Maïtine, Tröltzsch, Fredi},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal control; pointwise state constraints; semilinear parabolic equations; constraints of bottleneck; Lagrange multipliers; continuous linear programming},
language = {eng},
pages = {595-608},
publisher = {EDP Sciences},
title = {Optimal control of semilinear parabolic equations with state-constraints of bottleneck type},
url = {http://eudml.org/doc/90557},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Bergounioux, Maïtine
AU - Tröltzsch, Fredi
TI - Optimal control of semilinear parabolic equations with state-constraints of bottleneck type
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 595
EP - 608
LA - eng
KW - optimal control; pointwise state constraints; semilinear parabolic equations; constraints of bottleneck; Lagrange multipliers; continuous linear programming
UR - http://eudml.org/doc/90557
ER -

References

top
  1. [1] M. Bergounioux and F. Tröltzsch, Optimality Conditions and Generalized Bang-Bang Principle for a State Constrained Semi-linear Parabolic Problem. Num. Funct. Anal. Opt. 15 ( 1996) 517-537. Zbl0858.49021MR1404833
  2. [2] M. Bergounioux and F. Tröltzsch, Optimal Control of Linear Bottleneck Problems. ESAIM: Cont. Optim. Cal. Var. 3 ( 1998) 235-250. Zbl0904.49020MR1632175
  3. [3] E. Casas, Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 ( 1997) 1297-1327. Zbl0893.49017MR1453300
  4. [4] J.P. Raymond, Non Linear Boundary Control of Semilinear Parabolic Problems with Pointwise State Constraints. Discrete and Continuons Dynamical Systems 3 ( 1997) 341-370. Zbl0953.49026MR1444199
  5. [5] J.P. Raymond and H. Zidani, Hamiltonian Pontryagin's Principles for Control Problems Governed by Semilinear Parabolic Equations. Appl. Math. Optim., to appear Zbl0922.49013MR1665668
  6. [6] F. Tröltzsch, Optimality conditions for parabolic control problems and applications, Teubner Texte zur Mathematik, Teubner, Leipzig ( 1984). Zbl0587.49021MR768586
  7. [7] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 ( 1979) 49-62. Zbl0401.90104MR526427

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.