Computation of the distance to semi-algebraic sets

Christophe Ferrier

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 139-156
  • ISSN: 1292-8119

How to cite

top

Ferrier, Christophe. "Computation of the distance to semi-algebraic sets." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 139-156. <http://eudml.org/doc/90563>.

@article{Ferrier2000,
author = {Ferrier, Christophe},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {dual bond; optimality conditions; polynomial systems; interior point methods; semidefinite programming; location of zeros},
language = {eng},
pages = {139-156},
publisher = {EDP Sciences},
title = {Computation of the distance to semi-algebraic sets},
url = {http://eudml.org/doc/90563},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Ferrier, Christophe
TI - Computation of the distance to semi-algebraic sets
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 139
EP - 156
LA - eng
KW - dual bond; optimality conditions; polynomial systems; interior point methods; semidefinite programming; location of zeros
UR - http://eudml.org/doc/90563
ER -

References

top
  1. [1] F. Alizadeth, Interior point methods in semidefinite programming with application to combinatorial optimisation. SIAM J. Optim. 5 ( 1995) 13-51. Zbl0833.90087MR1315703
  2. [2] A. Bellido, Construction de fonctions d'itération pour le calcul simultané des solutions d'équations et de systèmes d'équations algébriques. Thèse de doctorat de l'Universté Paul Sabatier, Toulouse ( 1992). 
  3. [3] S. Boydet al., Linear Matrix Inequalities Problem in Control Theory. SIAM, Philadelphia, Stud. Appl. Math. 15 ( 1995). 
  4. [4] J.-P. Dedieu and J.-C. Yakoubsohn, Localization of an algebraic hypersurface by the exclusion algorithm. Comm. Comput. 2 ( 1992) 239-256. Zbl0759.14045MR1325531
  5. [5] Ch. Ferrier, Hubert's 17th problem and best dual bounds in quadratic minimization. Cybernetics and System Analysis 5 ( 1998) 76-91. Zbl0972.13017MR1712046
  6. [6] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley ( 1968). Reprinted SIAM, 1990. Zbl0193.18805MR1058438
  7. [7] R. Fletcher, Semi-defmite matrix constraints in optimization. SIAM J. Control Optim. 23 ( 1985) 493-513. Zbl0567.90088MR791884
  8. [8] C. Lemarechal and J.-B. Hiriart-Urruty, Convex Analysis and Minimization Algorithms II. Springer Verlag, Comprehensive Studies in Mathematics 306 ( 1991). Zbl0795.49002MR1295240
  9. [9] F. Jarre, Interior-point methods for convex programming. Appl. Math. Optim. 26 ( 1992) 287-391. Zbl0767.90063MR1175483
  10. [10] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM J. Control Optim. 31 ( 1993) 1360-1377. Zbl0780.65023MR1234007
  11. [11] N. Karmarkar, A new polynomial-time algorithm for linear programming. Combinatorica 4 ( 1984) 373-395. Zbl0557.90065MR779900
  12. [12] R.B. Kearfott, Some tests of generalized bisection. ACM Trans. Math. Software 13 ( 1987197-200. Zbl0632.65056MR918576
  13. [13] Yu. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex programming. SIAM, Philadelphia, Stud. Appl. Math. 13 ( 1994). Zbl0824.90112
  14. [14] N.Z. Shor, Dual estimate in multi-extremal problems. J. Global Optim. 2 ( 1992) 411-418. Zbl0765.90072
  15. [15] G. Sonnevend, An "analytical centre" for polyhedrons and a new classe of global algorithms for linear (smooth, convex) programming. Springer Verlag, Lecture Notes in Control and Inform. Sci. 84, System Modeling and Optimisation. 12th IFIP Conference on system optimisation 1984 ( 1986) 866-878. Zbl0602.90106MR903521
  16. [16] G. Sonnevend and J. Stoer, Global ellipsoidal approximation and homotopy methods for solving convex analitic programs. Appl. Math. Optim. 21 ( 1990) 139-165. Zbl0691.90071MR1019398
  17. [17] D.E. Stewart, Matrix Computation in C. University of Queensland, Australia ( 1992). ftp site: des@thrain.anu.edu.au. directory: pub/meschach 
  18. [18] L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. 1 ( 1996) 49-95. Zbl0845.65023MR1379041
  19. [19] J. Verschelde, P. Verlinden and R. Cools, Homotopy exploiting newton polytopes for solving sparse polynomials systems. SIAM J. Numer. Anal. 31 ( 1994) 915-930. Zbl0809.65048MR1275120
  20. [20] A. Wright, Finding solutions to a system of polynomial equations. Math. Comp. 44 ( 1985) 125-133. Zbl0567.55002MR771035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.