Computation of the distance to semi-algebraic sets
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 139-156
- ISSN: 1292-8119
Access Full Article
topHow to cite
topFerrier, Christophe. "Computation of the distance to semi-algebraic sets." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 139-156. <http://eudml.org/doc/90563>.
@article{Ferrier2000,
author = {Ferrier, Christophe},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {dual bond; optimality conditions; polynomial systems; interior point methods; semidefinite programming; location of zeros},
language = {eng},
pages = {139-156},
publisher = {EDP Sciences},
title = {Computation of the distance to semi-algebraic sets},
url = {http://eudml.org/doc/90563},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Ferrier, Christophe
TI - Computation of the distance to semi-algebraic sets
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 139
EP - 156
LA - eng
KW - dual bond; optimality conditions; polynomial systems; interior point methods; semidefinite programming; location of zeros
UR - http://eudml.org/doc/90563
ER -
References
top- [1] F. Alizadeth, Interior point methods in semidefinite programming with application to combinatorial optimisation. SIAM J. Optim. 5 ( 1995) 13-51. Zbl0833.90087MR1315703
- [2] A. Bellido, Construction de fonctions d'itération pour le calcul simultané des solutions d'équations et de systèmes d'équations algébriques. Thèse de doctorat de l'Universté Paul Sabatier, Toulouse ( 1992).
- [3] S. Boydet al., Linear Matrix Inequalities Problem in Control Theory. SIAM, Philadelphia, Stud. Appl. Math. 15 ( 1995).
- [4] J.-P. Dedieu and J.-C. Yakoubsohn, Localization of an algebraic hypersurface by the exclusion algorithm. Comm. Comput. 2 ( 1992) 239-256. Zbl0759.14045MR1325531
- [5] Ch. Ferrier, Hubert's 17th problem and best dual bounds in quadratic minimization. Cybernetics and System Analysis 5 ( 1998) 76-91. Zbl0972.13017MR1712046
- [6] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley ( 1968). Reprinted SIAM, 1990. Zbl0193.18805MR1058438
- [7] R. Fletcher, Semi-defmite matrix constraints in optimization. SIAM J. Control Optim. 23 ( 1985) 493-513. Zbl0567.90088MR791884
- [8] C. Lemarechal and J.-B. Hiriart-Urruty, Convex Analysis and Minimization Algorithms II. Springer Verlag, Comprehensive Studies in Mathematics 306 ( 1991). Zbl0795.49002MR1295240
- [9] F. Jarre, Interior-point methods for convex programming. Appl. Math. Optim. 26 ( 1992) 287-391. Zbl0767.90063MR1175483
- [10] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM J. Control Optim. 31 ( 1993) 1360-1377. Zbl0780.65023MR1234007
- [11] N. Karmarkar, A new polynomial-time algorithm for linear programming. Combinatorica 4 ( 1984) 373-395. Zbl0557.90065MR779900
- [12] R.B. Kearfott, Some tests of generalized bisection. ACM Trans. Math. Software 13 ( 1987197-200. Zbl0632.65056MR918576
- [13] Yu. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex programming. SIAM, Philadelphia, Stud. Appl. Math. 13 ( 1994). Zbl0824.90112
- [14] N.Z. Shor, Dual estimate in multi-extremal problems. J. Global Optim. 2 ( 1992) 411-418. Zbl0765.90072
- [15] G. Sonnevend, An "analytical centre" for polyhedrons and a new classe of global algorithms for linear (smooth, convex) programming. Springer Verlag, Lecture Notes in Control and Inform. Sci. 84, System Modeling and Optimisation. 12th IFIP Conference on system optimisation 1984 ( 1986) 866-878. Zbl0602.90106MR903521
- [16] G. Sonnevend and J. Stoer, Global ellipsoidal approximation and homotopy methods for solving convex analitic programs. Appl. Math. Optim. 21 ( 1990) 139-165. Zbl0691.90071MR1019398
- [17] D.E. Stewart, Matrix Computation in C. University of Queensland, Australia ( 1992). ftp site: des@thrain.anu.edu.au. directory: pub/meschach
- [18] L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. 1 ( 1996) 49-95. Zbl0845.65023MR1379041
- [19] J. Verschelde, P. Verlinden and R. Cools, Homotopy exploiting newton polytopes for solving sparse polynomials systems. SIAM J. Numer. Anal. 31 ( 1994) 915-930. Zbl0809.65048MR1275120
- [20] A. Wright, Finding solutions to a system of polynomial equations. Math. Comp. 44 ( 1985) 125-133. Zbl0567.55002MR771035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.