Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons
Mikhail Belishev; Aleksandr Glasman
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 207-217
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBelishev, Mikhail, and Glasman, Aleksandr. "Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 207-217. <http://eudml.org/doc/90568>.
@article{Belishev2000,
author = {Belishev, Mikhail, Glasman, Aleksandr},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {unreachable states; topology of a domain},
language = {eng},
pages = {207-217},
publisher = {EDP Sciences},
title = {Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons},
url = {http://eudml.org/doc/90568},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Belishev, Mikhail
AU - Glasman, Aleksandr
TI - Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 207
EP - 217
LA - eng
KW - unreachable states; topology of a domain
UR - http://eudml.org/doc/90568
ER -
References
top- [1] S. Avdonin, M. Belishev and S. Ivanov, The controllability in the filled domain for the multidimensional wave equation with a singular boundary control J. Math. Sci. 83 ( 1997). Zbl0870.93004MR1334739
- [2] M.I. Belishev, Boundary control in reconstruction of manifolds and metrics(the BC-method). Inverse Problems 13 ( 1997) R1-R45. http://www.iop.org/Journals/ip/. Zbl0990.35135MR1474359
- [3] M. Belishev and A. Glasman, Boundary control and inverse problem for the dynamical maxwell system: the recovering of velocity in regular zone. Preprint CMLA ENS Cachan ( 1998) 9814. http://www.cmla.ens-cachan.fr Zbl1012.78010
- [4] M. Belishev and A. Glasman, Vizualization of waves in the Maxwell dynamical system(The BC-method). Preprint POMI ( 1997) 22. http://www.pdmi.ras.ru/preprint/1997/ MR1701858
- [5] M. Belishev, V. Isakov, L. Pestov and V. Sharafutdinov, On reconstruction of gravity field via external electromagnetic measurements. Preprint PDMI ( 1999) 10.http://www.pdmi.ras.ru/preprint/1999/10-99.ps.gz. Zbl1048.35132
- [6] E.B. Bykhovskii and N.V. Smirnov, On an orthogonal decomposition of the space of square-summable vector- functions and operators of the vector analisys. Proc. Steklov Inst. Math. 59 ( 1960) 5-36, in Russian. Zbl0104.15504MR121641
- [7] G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique, Vol. 21 of Travaux et recherches mathématiques. Paris: Dunod. XX ( 1972). Zbl0298.73001MR464857
- [8] M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy Problem for Maxwell and elasticity systems. Nonlinear Partial Differential Equations and their applications. College de France Seminar. XIV ( 1999) to appear. Zbl1038.35159MR1936000
- [9] J. Lagnese, Exact boundary controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 ( 1989) 374-388. Zbl0678.49032MR984833
- [10] I. Lasiecka and R. Triggiani, Recent advances in regularity of second-order hyperbolic mixed problems, and applications, K.R.T. Christopher et al., Eds. Jones, editor. Springer-Verlag, Berlin, Dynam. Report. Expositions Dynam. Systems (N.S.) 3 ( 1994) 104-162. Zbl0807.35080MR722491
- [11] R. Leis, Initial boundary value problems in mathematical physics. Teubner, Stuttgart ( 1972). Zbl0599.35001MR841971
- [12] V.G. Maz'ya, The Sobolev spaces. Leningrad, Leningrad State University ( 1985), in Russian. Zbl0727.46017MR807364
- [13] O. Nalin, Controlabilité exacte sur une partie du bord des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math. 309 ( 1989) 811-815. Zbl0688.49041MR1055200
- [14] D.L. Russell, Boundary value control theory of the higher-dimensional wave equation. SIAM J. Control Optim. 9 ( 1971) 29-42. Zbl0204.46201MR274917
- [15] G. Schwarz, Hodge decomposition. A method for solving boundary value problems. Springer Verlag, Berlin, Lecture Notes in Math. 1607 ( 1995). Zbl0828.58002MR1367287
- [16] D. Tataru, Unique continuation for solutions to PDE's; between Hoermander's theorem and Holmgren's theorem. Comm. Partial Differential Equations 20 ( 1995) 855-884. Zbl0846.35021MR1326909
- [17] N. Week, Exact boundary controllability of a Maxwell problem. SIAM J. Control Optim. (to appear). Zbl0963.93040
Citations in EuDML Documents
top- M. I. Belishev, I. Lasiecka, The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation
- M. I. Belishev, I. Lasiecka, The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation
- John E. Lagnese, G. Leugering, Time domain decomposition in final value optimal control of the Maxwell system
- John E. Lagnese, G. Leugering, Time Domain Decomposition in Final Value Optimal Control of the Maxwell System
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.