Optimal control approach in inverse radiative transfer problems : the problem on boundary function
Valeri I. Agoshkov; Claude Bardos
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 259-278
- ISSN: 1292-8119
Access Full Article
topHow to cite
topAgoshkov, Valeri I., and Bardos, Claude. "Optimal control approach in inverse radiative transfer problems : the problem on boundary function." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 259-278. <http://eudml.org/doc/90570>.
@article{Agoshkov2000,
author = {Agoshkov, Valeri I., Bardos, Claude},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {reflection operator; control equation operator; regularization parameter; iterative algorithm; optimal control; inverse radiative transfer},
language = {eng},
pages = {259-278},
publisher = {EDP Sciences},
title = {Optimal control approach in inverse radiative transfer problems : the problem on boundary function},
url = {http://eudml.org/doc/90570},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Agoshkov, Valeri I.
AU - Bardos, Claude
TI - Optimal control approach in inverse radiative transfer problems : the problem on boundary function
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 259
EP - 278
LA - eng
KW - reflection operator; control equation operator; regularization parameter; iterative algorithm; optimal control; inverse radiative transfer
UR - http://eudml.org/doc/90570
ER -
References
top- [1] V.A. Ambartsumyan, Scattering and absorption of light in planetary atmospheres. Uchen. Zap. TsAGI 82 ( 1941), in Russian.
- [2] S. Chandrasekhar, Radiative Transfer. New York ( 1960). Zbl0037.43201MR111583
- [3] J.-L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris ( 1968). Zbl0179.41801MR244606
- [4] V.I. Lebedev and V.I. Agoshkov, The Poincaré-Steklov Operators and their Applications in Analysis. Dept. of Numerical Math. of the USSR Academy of Sciences, Moscow ( 1983), in Russian. Zbl0547.47029MR827980
- [5] V.I. Agoshkov, Generalized solutions of transport equations and their smoothness properties. Nauka, Moscow ( 1988), in Russian. Zbl0664.35070MR988636
- [6] V.I. Agoshkov, Reflection operators and domain decomposition methods in transport theory problems. Sov. J. Numer. Anal. Math. Modelling 2 ( 1987) 325-347. Zbl0825.65110MR915327
- [7] V.I. Agoshkov, On the existence of traces of functions in spaces used in transport theory problems. Dokl. Akad. Nauk SSSR 288 ( 1986) 265-269, in Russian. Zbl0636.46038MR843433
- [8] V.S. Vladimirov, Mathematical problems of monenergetic particle transport theory. Trudy Mat. Inst. Steklov 61 ( 1961), in Russian. MR156658
- [9] G.I. Marchuk, Design of Nuclear Reactors. Atomizdat, Moscow ( 1961), in Russian.
- [10] V.V. Sobolev, Light Scattering in Planetary Atmospheres. Pergamon Press, Oxford, U.K. ( 1973).
- [11] G.I. Marchuk and V.I. Agoshkov, Reflection Operators and Contemporary Applications to Radiative Transfer. Appl. Math. Comput. 80 ( 1995) 1-19. Zbl0831.65146MR1323906
- [12] V.I. Agoshkov, Domain decomposition methods in problems of hydrodynamics. I. Problem plain circulation in ocean. Moscow: Department of Numerical Mathematics, Preprint No. 96 ( 1985) 12, in Russian. Zbl0678.76039MR905303
- [13] V.I. Agoshkov, Domain decomposition methods and perturbation methods for solving some time dependent problems of fluid dynamics, in Proc. of First International Interdisciplinary Conference. Olympia-91 ( 1991). Zbl0766.65054
- [14] V.I. Agoshkov, Control theory approaches in: data assimilation processes, inverse problems, and hydrodynamics. Computer Mathematics and its Applications, HMS/CMA 1 ( 1994) 21-39. Zbl0858.65100MR1372269
- [15] Ill-posed problems in natural Sciences, edited by A.N. Tikhonov. Moscow, Russia - VSP, Netherlands ( 1992). MR1219957
- [16] A.L. Ivankov, Inverse problems for the nonstationary kinetic transport equation. In [15]. Zbl0785.45007
- [17] A.I. Prilepko, D.G. Orlovskii and I.A. Vasin, Inverse problems in mathematical physics. In [15]. Zbl0789.35179
- [18] Yu.E. Anikonov, New methods and results in multidimensional inverse problems for kinetic equations. In [15]. Zbl0786.35137
- [19] E.C. Titchmarsh, Introduction to the Theory of Fourier Integral. New York ( 1937). Zbl0017.40404JFM63.0367.05
- [20] C. Bardos, Mathematical approachfor the inverse problem in radiative media ( 1986), not published.
- [21] K.M. Case, Inverse problem in transport theory. Phys. Fluids 16 ( 1973) 16-7-1611. MR334781
- [22] L.P. Niznik and V.G. Tarasov, Reverse scattering problem for a transport equation with respect to directions.Preprint, Institute of Mathematics, Academy Sciences of the Ukrainian SSR ( 1980). MR591356
- [23] K.K. Hunt and N.J. McCormick, Numerical test of an inverse method for estimating single-scattering parameters from pulsed multiple-scattering experiments. J. Opt. Soc. Amer. A. 2 ( 1985).
- [24] N.J. McCormick, Recent Development in inverse scattering transport method. Trans. Theory Statist. Phys. 13 ( 1984) 15-28. MR752128
- [25] C. Bardos, R. Santos and R. Sentis, Diffusion approximation and the computation of critical size. Trans. Amer. Math. Soc. 284 ( 1986) 617-649. Zbl0508.60067MR743736
- [26] C. Bardos, R. Caflish and B. Nicolaenko, Different aspect of the Milne problem. Trans. Theory Statist. Phys. 16 ( 1987) 561-585. Zbl0643.35089MR906918
- [27] V.P. Shutyaev, Integral renection operators and solvability of inverse transport problem, in Integral equations in applied modelling. Kiev: Inst. of Electrodynamics, Academy of Sciences of Ukraine, Vol. 2 ( 1986) 243-244, in Russian.
- [28] V.I. Agoshkov and C. Bardos, Inverse radiative problems: The problem on boundary function. CMLA, ENS de Cachan, Preprint No. 9801 ( 1998). Zbl0957.49018
- [29] V.I. Agoshkov and C. Bardos, Inverse radiative problems: The problem on the right-hand-side function. CMLA, ENS de Cachan, Preprint No. 9802 ( 1998).
- [30] V.I. Agoshkov and C. Bardos, Optimal control approach in 3D-inverse radiative problem on boundary function (to appear). Zbl0957.49018
- [31] V.I. Agoshkov, C. Bardos, E.I. Parmuzin and V.P. Shutyaev, Numerical analysis of iterative algorithms for an inverse boundary transport problem (to appear). Zbl1010.82035MR1749691
- [32] S.I. Kabanikhin and A.L. Karchevsky, Optimization methods of solving inverse problems of geoelectric, In [15]. Zbl0786.35144
- [33] F. Coron, F. Golse and C. Sulem, A Classification of Well-Posed Kinetic Layer Problems. Comm. Pure Appl. Math. 41 ( 1988) 409-435. Zbl0632.76088MR933229
- [34] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, CEA. Masson, Tome 9. Zbl0642.35001
- [35] R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. ( 1994) 269-378. Zbl0838.93013MR1288099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.