Sufficient conditions for infinite-horizon calculus of variations problems
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 279-292
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBlot, Joël, and Hayek, Naïla. "Sufficient conditions for infinite-horizon calculus of variations problems." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 279-292. <http://eudml.org/doc/90571>.
@article{Blot2000,
author = {Blot, Joël, Hayek, Naïla},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal growth theory; infinite horizon problems; sufficient conditions of optimality; techniques of extremal fields},
language = {eng},
pages = {279-292},
publisher = {EDP Sciences},
title = {Sufficient conditions for infinite-horizon calculus of variations problems},
url = {http://eudml.org/doc/90571},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Blot, Joël
AU - Hayek, Naïla
TI - Sufficient conditions for infinite-horizon calculus of variations problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 279
EP - 292
LA - eng
KW - optimal growth theory; infinite horizon problems; sufficient conditions of optimality; techniques of extremal fields
UR - http://eudml.org/doc/90571
ER -
References
top- [1] V.M. Alexeev, V.M. Tikhomirov and S.V. Fomin, Commande optimale, French translation. Mir, Moscow ( 1982). MR728225
- [2] K.J. Arrow, Applications of Control Theory to Economic Growth. Math, of the Decision Sciences, edited by G.B. Dantzig and A.F. Veinott Jr. ( 1968). Zbl0193.20302MR235876
- [3] J. Blot and P. Cartigny, Optimality in Infinite-Horizon Problems under Signs Conditions. J. Optim. Theory Appl. (to appear). Zbl1004.49014
- [4] J. Blot and N. Hayek, Second-Order Necessary Conditions for the Infinite-Horizon Variational Problems. Math. Oper. Res. 21 ( 1996) 979-990. Zbl0868.90017MR1419912
- [5] J. Blot and Ph. Michel, First-Order Necessary Conditions for the Infinite-Horizon Variational Problems. J. Optim. Theory Appl. 88 ( 1996) 339-364. Zbl0843.49014MR1373098
- [6] N. Bourbaki, Fonctions d'une variable réelle. Hermann, Paris ( 1976). MR580296
- [7] D.A. Carlson, A.B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control, Deterministic and Stochastic Systems, Second Edition. Springer-Verlag, Berlin ( 1991). Zbl0758.49001
- [8] H. Cartan, Calcul Différentiel, Hermann, Paris ( 1967). Zbl0156.36102MR223194
- [9] L. Cesari, Optimization Theory and Applications: Problems with Ordinary Differential Equations. Springer-Verlag, New York ( 1983). Zbl0506.49001MR688142
- [10] J. Dugundji, Topology. Allyn and Bacon, Boston ( 1966). Zbl0144.21501MR193606
- [11] G.E. Ewing, Calculus of Variations, with Applications. Dover Pub. Inc., New York ( 1985). Zbl0198.44501MR807362
- [12] W.H. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control. Springer-Verlag, New York ( 1975). Zbl0323.49001MR454768
- [13] W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York ( 1993). Zbl0773.60070MR1199811
- [14] M. Giaquinta and S. Hildebrandt, Calculus of Variations ISpringer-Verlag, Berlin ( 1996). Zbl0853.49001
- [15] C. Godbillon, Éléments de topologie algébrique. Hermann, Paris ( 1971). Zbl0218.55001MR301725
- [16] R.F. Hartl, S.P. Sethi and R.G. Vickson, A Survey of the Maximum Principles for Optimal Control Problems with State Constraints. SIAM Rev. 37 ( 1995) 181-218. Zbl0832.49013MR1343211
- [17] M.H. Hestenes, Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publ. Comp., Huntington, N.Y. ( 1980). Zbl0481.49001MR601775
- [18] G. Leitman and H. Stalford, A Sufficiency Theorem for Optimal Control. J. Optim. Theory Appl. VIII ( 1971) 169-174. Zbl0208.17306MR300185
- [19] D. Leonard and N.V. Long, Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, New York ( 1992). MR1153412
- [20] O.L. Mangasarian, Sufficient Conditions for the Optimal Control of Nonlinear Systems. SIAM J. Control IV ( 1966) 139-152. Zbl0154.10401MR189864
- [21] Z. Nehari, Sufficient Conditions in the Calculus of Variations and in the Theory of Optimal Control. Proc. Amer. Math. Soc. 39 ( 1973) 535-539. Zbl0273.49012MR319007
- [22] L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mitchenko, Théorie Mathématique des Processus Optimaux, French Edition. Mir, Moscow ( 1974).
- [23] H. Sagan, Introduction to the Calculus of Variations. McGraw-Hill, New York ( 1969).
- [24] Th. Sargent, Macroeconomic Theory, Second Edition. Academic Press, New York ( 1986). Zbl0464.90002MR937259
- [25] A. Seierstadand K. Sydsaeter, Sufficient Conditions in Optimal Control Theory, Internat. Econom. Rev. 18 ( 1977). Zbl0392.49010MR454795
- [26] L. Schwartz, Cours d'Analyse de l'École Polytechnique, Tome 1. Hermann, Paris ( 1967).
- [27] L. Schwartz, Topologie Générale et Analyse Fonctionnelle. Hermann, Paris ( 1970). Zbl0206.06301MR467223
- [28] G. Sorger, Sufficient Conditions for Nonconvex Control Problems with State Constraints. J. Optim. Theory Appl. 62 ( 1989) 289-310. Zbl0651.49009MR1009070
- [29] J.L. Troutman, Variational Calculus with Elementary Convexity. Springer-Verlag, New York ( 1983). Zbl0523.49001MR697723
- [30] V. Zeidan, First and Second Order Sufficient Conditions for Optimal Control and Calculus of Variations. Appl. Math. Optim. 11 ( 1984) 209-226. Zbl0558.49006MR748180
- [31] A.J. Zaslavski, Existence and Structure of Optimal Solutions of Variational Problems, Recent Developments in Optimization Theory and Nonlinear Analysis, edited by Y. Censor and S. Reich. Amer. Math. Soc. Providence, Rhode Island ( 1997) 247-278. Zbl0868.49001MR1443006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.