Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control

Hartmut Logemann; Ruth F. Curtain

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 395-424
  • ISSN: 1292-8119

How to cite

top

Logemann, Hartmut, and Curtain, Ruth F.. "Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 395-424. <http://eudml.org/doc/90575>.

@article{Logemann2000,
author = {Logemann, Hartmut, Curtain, Ruth F.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {well-posed linear systems; absolute stability; actuator nonlinearities; positive real; circle criterion; robust tracking},
language = {eng},
pages = {395-424},
publisher = {EDP Sciences},
title = {Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control},
url = {http://eudml.org/doc/90575},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Logemann, Hartmut
AU - Curtain, Ruth F.
TI - Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 395
EP - 424
LA - eng
KW - well-posed linear systems; absolute stability; actuator nonlinearities; positive real; circle criterion; robust tracking
UR - http://eudml.org/doc/90575
ER -

References

top
  1. [1] M.A. Aizerman and F.R. Gantmacher, Absolute Stability of Regulator Systems. Holden-Day, San Francisco ( 1964). Zbl0123.28401MR183556
  2. [2] B.D.O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice Hall, Englewood-Cliffs, NJ ( 1973). 
  3. [3] V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems. Academic Press, Boston ( 1993). Zbl0776.49005MR1195128
  4. [4] F. Bucci, Frequency-domain stability of nonlinear feedback systems with unbounded input operator. Preprint. Dipartimento de Matematica Applicata "G. Sansone", Università degli Studi di Firenze ( 1997) (to appear in Dynamics of Continuous, Discrete and Impulsive Systems). Zbl0966.93089MR1774950
  5. [5] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York ( 1983). Zbl0582.49001MR709590
  6. [6] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York ( 1998). Zbl1047.49500MR1488695
  7. [7] C. Corduneanu, Integral Equations and Stability of Feedback Systems. Academic Press, New York ( 1973). Zbl0273.45001MR358245
  8. [8] C. Corduneanu, Almost Periodic Functions. Wiley, New York ( 1968). Zbl0175.09101MR481915
  9. [9] R.F. Curtain, H. Logemann, S. Townley and H. Zwart, Well-posedness, stabilizability and admissibility for Pritchard-Salamon systems. Math. Systems, Estimation and Control 7 ( 1997) 439-476. Zbl0815.93046MR1472401
  10. [10] R.F. Curtain and G. Weiss, Well-posedness of triples of operators in the sense of linear systems theory, in Control and Estimation of Distributed Parameter System, edited by F. Kappel, K. Kunisch and W. Schappacher. Birkhäuser Verlag, Basel ( 1989) 41-59. Zbl0686.93049MR1033051
  11. [11] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Intgeral and Functional Equations. Cambridge University Press, Cambridge ( 1990). Zbl0695.45002MR1050319
  12. [12] P.R. Halmos, Finite-Dimensional Vector Spaces. Springer-Verlag, New York ( 1987). Zbl0288.15002MR409503
  13. [13] H.K. Khalil, Nonlinear Systems, 2nd Edition. Prentice-Hall, Upper Saddle River, NJ ( 1996). Zbl1003.34002
  14. [14] S. Lefschetz, Stability of Nonlinear Control Systems. Academic Press, New York ( 1965). Zbl0136.08801MR175676
  15. [15] G.A. Leonov, D.V. Ponomarenko and V.B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis. World Scientific, Singapore ( 1996). Zbl0954.65091MR1409144
  16. [16] B.A.M van Keulen, H∞-Control for Infinite-Dimensional Systems: A State-Space Approach. Birkhäuser Verlag, Boston ( 1993). Zbl0793.93034
  17. [17] H. Logemann, Circle criteria, small-gain conditions and internal stability for infinite-dimensional systems. Automatica 27 ( 1991) 677-690. Zbl0749.93073MR1113737
  18. [18] H. Logemann and E.P. Ryan, Time-varying and adaptive integral control of innnite-dimensional regular linear systems with input nonlinearities. SIAM J. Control Optim. 38 ( 2000) 1120-1144. Zbl0968.93074MR1760063
  19. [19] H. Logemann, E.P. Ryan and S. Townley, Integral control of linear systems with actuator nonlinearities: lower bounds for the maximal regulating gain. IEEE Trans. Auto. Control 44 ( 1999) 1315-1319. Zbl0955.93018MR1689160
  20. [20] H. Logemann, E.P. Ryan and S. Townley, Integral control of infinite-dimensional linear systems subject to input saturation. SIAM J. Control Optim. 36 ( 1998) 1940-1961. Zbl0913.93031MR1638027
  21. [21] H. Logemann and S. Townley, Low-gain control of uncertain regular linear systems. SIAM J. Control Optim. 35 ( 1997) 78-116. Zbl0873.93044MR1430284
  22. [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York ( 1983). Zbl0516.47023MR710486
  23. [23] W. Rudin, Functional Analysis. McGraw-Hill, New York ( 1973). Zbl0253.46001MR365062
  24. [24] D. Salamon, Realization theory in Hilbert space. Math. Systems Theory 21 ( 1989) 147-164. Zbl0668.93018MR977021
  25. [25] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach. Trans. Amer. Math. Soc. 300 ( 1987) 383-431. Zbl0623.93040MR876460
  26. [26] O.J. Staffans, Well-Posed Linear Systems, monograph in preparation (preprint available at http://www.abo.fi/-staffans/). 
  27. [27] O.J. Staffans, Quadratic optimal control of stable well-posed linear systems. Trans. Amer. Math. Soc. 349 ( 1997) 3679-3715. Zbl0889.49023MR1407712
  28. [28] M. Vidyasagar, Nonlinear Systems Analysis, 2nd Edition. Prentice Hall, Englewood Cliffs, NJ ( 1993). Zbl0759.93001
  29. [29] G. Weiss, Transfer functions of regular linear systems, Part I: Characterization of regularity. Trans. Amer. Math. Soc. 342 ( 1994) 827-854. Zbl0798.93036MR1179402
  30. [30] G. Weiss, Admissibility of unbounded control operators. SIAM J. Control Optim. 27 ( 1989) 527-545. Zbl0685.93043MR993285
  31. [31] G. Weiss, Admissibility observation operators for linear semigroups. Israel J. Math. 65 ( 1989) 17-43. Zbl0696.47040MR994732
  32. [32] G. Weiss, The representation of regular linear systems on Hilbert spaces, in Control and Estimation of Distributed Parameter System, edited by F. Kappel, K. Kunisch and W. Schappacher. Birkhäuser Verlag, Basel ( 1989) 401-416. Zbl0685.93040MR1033074
  33. [33] D. Wexler, On frequency domain stability for evolution equations in Hilbert spaces via the algebraic Riccati equation. SIAM J. Math. Analysis 11 ( 1980) 969-983. Zbl0488.34054MR595824
  34. [34] D. Wexler, Frequency domain stability for a class of equations arising in reactor dynamics. SIAM J. Math. Analysis 10 ( 1979) 118-138. Zbl0404.45016MR516758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.