Exact boundary controllability of a hybrid system of elasticity by the HUM method
ESAIM: Control, Optimisation and Calculus of Variations (2001)
- Volume: 6, page 183-199
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Castro and E. Zuazua, Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass. SIAM J. Control Optim. 36 (1998) 1576–1595. Zbl0909.35085
- [2] S. Hanssen and E. Zuazua, Exact controllability and stabilization of a vibration string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357–1391. Zbl0853.93018
- [3] W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity. Arch. Rational Mech. Anal. 103 (1988) 193–236. Zbl0656.73029
- [4] W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152 (1988) 281–330. Zbl0664.73025
- [5] J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. I. Masson, Paris (1988). Zbl0653.93003
- [6] J.L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. Zbl0644.49028
- [7] L. Markus and Y.C. You, Dynamical boundary control for elastic Al plates of general shape. SIAM J. Control Optim. 31 (1993) 983–992. Zbl0785.93026
- [8] S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control noise. SIAM J. Control Optim. 35 (1987) 1614–1637. Zbl0888.35017
- [9] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983). Zbl0516.47023MR710486
- [10] B. Rao, Stabilisation du modèle SCOLE par un contrôle frontière a priori borné. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1061–1066. Zbl0797.49007
- [11] B. Rao, Uniform stabilization and exact controllability of Kirchhoff plates with dynamical boundary controls.
- [12] B. Rao, Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33 (1995) 440–454. Zbl0821.93041
- [13] B. Rao, Contrôlabilité exacte frontière d’un système hybride en élasticité par la méthode HUM. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 889–894. Zbl0894.93006
- [14] J. Simon, Compact sets in the space . Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65–96. Zbl0629.46031
- [15] M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control. Math. Control Signals Systems (1989) 265–285. Zbl0676.93057
- [16] E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, in Lions [5], 465–491.