Homogenization of a spectral equation with drift in linear transport
ESAIM: Control, Optimisation and Calculus of Variations (2001)
- Volume: 6, page 613-627
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 9 (1992) 1482-1518. Zbl0770.35005MR1185639
- [2] G. Allaire and G. Bal, Homogenization of the criticality spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. Zbl0931.35010MR1726482
- [3] G. Bal, Couplage d’équations et homogénéisation en transport neutronique, Thèse de Doctorat de l’Université Paris 6 (1997).
- [4] G. Bal, Boundary layer analysis in the homogenization of neutron transport equations in a cubic domain. Asymptot. Anal. 20 (1999) 213-239. Zbl1040.35508MR1715334
- [5] G. Bal, First-order Corrector for the Homogenization of the Criticality Eigenvalue Problem in the Even Parity Formulation of the Neutron Transport. SIAM J. Math. Anal. 30 (1999) 1208-1240. Zbl0937.35007MR1718300
- [6] G. Bal, Diffusion Approximation of Radiative Transfer Equations in a Channel. Transport Theory Statist. Phys. (to appear). Zbl1031.86002MR1848597
- [7] P. Benoist, Théorie du coefficient de diffusion des neutrons dans un réseau comportant des cavités, Note CEA-R 2278 (1964).
- [8] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland (1978). Zbl0404.35001MR503330
- [9] , Boundary Layers and Homogenization of Transport Processes. RIMS, Kyoto Univ. (1979). Zbl0408.60100
- [10] J. Bergh and L. Löfström, Interpolation spaces. Springer, New York (1976). Zbl0344.46071
- [11] J. Bussac and P. Reuss, Traité de neutronique. Hermann, Paris (1978).
- [12] Y. Capdeboscq, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 807-812. Zbl0918.35135MR1663726
- [13] , Homogenization of a Neutronic Critical Diffusion Problem with Drift. Proc. Roy Soc. Edinburgh Sect. A (accepted). Zbl1066.82530
- [14] F. Chatelin, Spectral approximation of linear operators. Academic Press, Comp. Sci. Appl. Math. (1983). Zbl0517.65036MR716134
- [15] R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for Science and Technology, Vol. 6. Springer Verlag, Berlin (1993). Zbl0802.35001MR1295030
- [16] V. Deniz, The theory of neutron leakage in reactor lattices, in Handbook of nuclear reactor calculations, Vol. II, edited by Y. Ronen (1968) 409-508.
- [17] J. Garnier, Homogenization in a periodic and time dependent potential. SIAM J. Appl. Math. 57 (1997) 95-111. Zbl0872.35009MR1429379
- [18] F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. Zbl0652.47031MR923047
- [19] T. Kato, Perturbation theory for linear operators. Springer Verlag, Berlin (1976). Zbl0342.47009MR407617
- [20] M.L. Kleptsyna and A.L. Piatnitski, On large deviation asymptotics for homgenized SDE with a small diffusion. Probab. Theory Appl. (submitted).
- [21] S. Kozlov, Reductibility of quasiperiodic differential operators and averaging. Trans. Moscow Math. Soc. 2 (1984) 101-136. Zbl0566.35036MR737902
- [22] E.W. Larsen, Neutron transport and diffusion in inhomogeneous media. I. J. Math. Phys. 16 (1975) 1421-1427. MR391839
- [23] , Neutron transport and diffusion in inhomogeneous media. II. Nuclear Sci. Engrg. 60 (1976) 357-368.
- [24] E.W. Larsen and J.B. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15 (1974) 75-81. MR339741
- [25] E.W. Larsen and M. Williams, Neutron Drift in Heterogeneous Media. Nuclear Sci. Engrg. 65 (1978) 290-302.
- [26] M. Mokhtar–Kharroubi, Mathematical Topics in Neutron Transport Theory. World Scientific, Singapore (1997). Zbl0997.82047
- [27] J. Planchard, Méthodes mathématiques en neutronique, Collection de la Direction des Études et Recherches d’EDF. Eyrolles (1995).
- [28] L. Ryzhik, G. Papanicolaou and J.B. Keller, Transport equations for elastic and other waves in random media. Wave Motion 24 (1996) 327-370. Zbl0954.74533MR1427483
- [29] R. Sentis, Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal. 16 (1985) 151-166. Zbl0609.45002MR772875
- [30] M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Berlin (1990). Zbl0746.49010MR1078018
Citations in EuDML Documents
top- Grégoire Allaire, Guillaume Bal, Vincent Siess, Homogenization and localization in locally periodic transport
- Grégoire Allaire, Guillaume Bal, Vincent Siess, Homogenization and localization in locally periodic transport
- Grégoire Allaire, Homogénéisation et limite de diffusion pour une équation de transport
- Thierry Goudon, Antoine Mellet, Homogenization and diffusion asymptotics of the linear Boltzmann equation
- Thierry Goudon, Antoine Mellet, Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation