Relaxation of Quasilinear Elliptic Systems via A-quasiconvex Envelopes
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 7, page 309-334
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topRaitums, Uldis. "Relaxation of Quasilinear Elliptic Systems via A-quasiconvex Envelopes." ESAIM: Control, Optimisation and Calculus of Variations 7 (2010): 309-334. <http://eudml.org/doc/90625>.
@article{Raitums2010,
abstract = {
We consider the weak closure WZ of the set Z of all feasible pairs (solution, flow) of the
family of potential elliptic systems
$$
\begin\{array\}\{c\}\mbox\{div\}\left(\sum\limits\_\{s=1\}^\{s\_0\}\sigma\_s(x)F\_s^\prime
(\nabla u(x)+g(x))-f(x)\right)=0\;\mbox\{in\}\,\Omega,
u=(u\_1,\dots, u\_m)\in H\_0^1(\Omega;\{\bf R\}^m),\;\sigma=(\sigma\_1,\dots,\sigma\_\{s\_0\})\in S,\end\{array\}
$$
where Ω ⊂ Rn is a bounded Lipschitz domain, Fs are strictly convex smooth
functions with quadratic growth and $S=\\{\sigma\,
measurable\,\mid\,\sigma_s(x)=0\;\mbox\{or\}\,1,\;s=1,\dots,s_0,\;\sigma_1(x)+\cdots +\sigma_\{s_0\}(x)=1\\}$.
We show that WZ is the zero level set for an integral functional with the integrand $Q\cal F$ being
the A-quasiconvex envelope for a certain function $\cal F$ and the operator A = (curl,div)m.
If the functions Fs are isotropic, then on the characteristic cone Λ (defined by the operator
A) $Q\{\cal F\}$
coincides with the
A-polyconvex envelope of $\cal F$ and can be computed by means of rank-one laminates.
},
author = {Raitums, Uldis},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Quasilinear elliptic system; relaxation; A-quasiconvex envelope.; quasilinear elliptic system; -quasiconvex envelope; integral functional},
language = {eng},
month = {3},
pages = {309-334},
publisher = {EDP Sciences},
title = {Relaxation of Quasilinear Elliptic Systems via A-quasiconvex Envelopes},
url = {http://eudml.org/doc/90625},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Raitums, Uldis
TI - Relaxation of Quasilinear Elliptic Systems via A-quasiconvex Envelopes
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 309
EP - 334
AB -
We consider the weak closure WZ of the set Z of all feasible pairs (solution, flow) of the
family of potential elliptic systems
$$
\begin{array}{c}\mbox{div}\left(\sum\limits_{s=1}^{s_0}\sigma_s(x)F_s^\prime
(\nabla u(x)+g(x))-f(x)\right)=0\;\mbox{in}\,\Omega,
u=(u_1,\dots, u_m)\in H_0^1(\Omega;{\bf R}^m),\;\sigma=(\sigma_1,\dots,\sigma_{s_0})\in S,\end{array}
$$
where Ω ⊂ Rn is a bounded Lipschitz domain, Fs are strictly convex smooth
functions with quadratic growth and $S=\{\sigma\,
measurable\,\mid\,\sigma_s(x)=0\;\mbox{or}\,1,\;s=1,\dots,s_0,\;\sigma_1(x)+\cdots +\sigma_{s_0}(x)=1\}$.
We show that WZ is the zero level set for an integral functional with the integrand $Q\cal F$ being
the A-quasiconvex envelope for a certain function $\cal F$ and the operator A = (curl,div)m.
If the functions Fs are isotropic, then on the characteristic cone Λ (defined by the operator
A) $Q{\cal F}$
coincides with the
A-polyconvex envelope of $\cal F$ and can be computed by means of rank-one laminates.
LA - eng
KW - Quasilinear elliptic system; relaxation; A-quasiconvex envelope.; quasilinear elliptic system; -quasiconvex envelope; integral functional
UR - http://eudml.org/doc/90625
ER -
References
top- J. Ball, B. Kirchheim and J. Kristensen, Regularity of quasiconvex envelopes, Preprint No. 72/1999. Max-Planck Institute für Mathematik in der Naturwissenschaften, Leipzig (1999).
- B. Dacorogna, Direct Methods in the Calculus of Variations. Springer: Berlin, Heidelberg, New York (1989).
- I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal.30 (1999) 1355-1390.
- R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems, Parts I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 138-182, 353-377.
- K.A. Lurie, A.V. Fedorov and A.V. Cherkaev, Regularization of optimal problems of design of bars and plates, Parts 1 and 2. JOTA37 (1982) 499-543.
- M. Miettinen and U. Raitums, On C1-regularity of functions that define G-closure. Z. Anal. Anwendungen20 (2001) 203-214.
- F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Super. Pisa8 (1981) 69-102.
- U. Raitums, Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential Equations Theory and Numerical Solutions. Boca Raton: Chapman & Hall/CRC, Res. Notes in Math. 406 (2000) 290-297.
- L. Tartar, An introduction to the homogenization method in optimal design. CIME Summer Course. Troia (1998). URIhttp://www.math.cmu.edu/cna/publications.html
- V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer: Berlin, Hedelberg, New York (1994).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.