Some Applications of Optimal Control Theory of Distributed Systems

Alfredo Bermudez

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 8, page 195-218
  • ISSN: 1292-8119

Abstract

top
In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

How to cite

top

Bermudez, Alfredo. "Some Applications of Optimal Control Theory of Distributed Systems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 195-218. <http://eudml.org/doc/90645>.

@article{Bermudez2010,
abstract = { In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control },
author = {Bermudez, Alfredo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Optimal control; sterilization; canned food; water pollution; noise reduction.; optimal control; water pollution; noise reduction},
language = {eng},
month = {3},
pages = {195-218},
publisher = {EDP Sciences},
title = {Some Applications of Optimal Control Theory of Distributed Systems},
url = {http://eudml.org/doc/90645},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Bermudez, Alfredo
TI - Some Applications of Optimal Control Theory of Distributed Systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 195
EP - 218
AB - In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control
LA - eng
KW - Optimal control; sterilization; canned food; water pollution; noise reduction.; optimal control; water pollution; noise reduction
UR - http://eudml.org/doc/90645
ER -

References

top
  1. L. Álvarez-Vázquez and A. Martínez, Modelling and control of natural convection in canned foods. IMA J. Appl. Math.63 (1999) 246-265.  
  2. K.H. Baek and S.J. Elliot, Natural algorithms for choosing source locations in active control systems. J. Sound Vibr.186 (1995) 245-267.  
  3. Beranek and Ver, Noise and vibration control engineering. Principles and applications. John Wiley and Sons, New York (1992).  
  4. A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control, in Mathematics, Climate and Environment, edited by J.I. Díaz, J.-L. Lions. Masson, Paris (1993).  
  5. A. Bermúdez and A. Martínez, A state constrained optimal control problem related to the sterilization of canned foods. Automatica. The IFAC Journal30 (1994) 319-329.  
  6. A. Bermúdez, A. Martínez and C. Rodríguez, Un problème de contrôle ponctuel lié à l'emplacement optimal d'émissaires d'évacuation sous-marine. C. R. Acad. Sci. Paris Sér. I Math.313 (1991) 515-518.  
  7. A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal.11 (1991) 79-97.  
  8. A. Bermúdez and C. Saguez, Optimal control of a Signorini problem. SIAM J. Control Optim.25 (1987) 576-582.  
  9. J.F. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes distribuées sur l'état, in Nonlinear partial differential equations and their applications, edited by H. Brezis and J.-L. Lions. Pitman (1988).  
  10. E. Casas, L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math.47 (1985) 627-632.  
  11. E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim.24 (1986) 1309-1318.  
  12. E. Casas, Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim.35 (1997) 1297-1327.  
  13. J.F. Bonnans, An introduction to Newton type algorithms for nonlinearly constrained optimization problems. Birkhauser-Verlag, Basel, Internat. Ser. Numer. Math.87 (1989) 1-17.  
  14. E. Casas and C. Pola , PLCBAS User's Guide VERSION 1.1. Computación 1. Universidad de Cantabria, Santander, Spain (1989).  
  15. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysys, Vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holand (1991).  
  16. E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equatons with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci.13 (1986) 487-535.  
  17. I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976).  
  18. P. Gamallo, Contribución al estudio matemático de problemas de simulación y control activo del ruido, Ph. Thesis. Universidade de Santiago de Compostela, Spain (2002).  
  19. J. Herskovits, A two stage feasible directions algorithm for nonlinear constrained optimization. Math. Programming36 (1986) 19-38.  
  20. J. Herskovits, A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl.99 (1998) 121-146.  
  21. J.B. Hiriart-Urruty and C. Lemarechal, Convex analysis and Minimization Algorithms. Springer-Verlag, Berlin, Heildelberg (1993).  
  22. B. Hu and J. Yong, Pontriagin maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints. SIAM J. Control Optim.33 (1995) 1857-1880.  
  23. O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968).  
  24. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968).  
  25. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).  
  26. P.A. Nelson and S.J. Elliot, Active Control of Sound. Academic Press, London (1999).  
  27. G.I. Marchuk, Mathematical models in environmental problems. North Holland, Amsterdam (1986).  
  28. A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Theoretical and numerical analysis of an optimal control problem related to waste-water treatment. SIAM J. Control Optim.38 (2000) 1534-1553.  
  29. C. Olin Ball and F.C.W. Olson, Sterilization in food technology. Mc Graw Hill, New York (1957).  
  30. R.I. Pérez Martín, J.R. Banga and J.M. Gallardo, Simulation of thermal processes in tuna can manufacture. Instituto de Investigaciones Marinas (C.S.I.C.), Vigo, Spain (1989).  
  31. E.R. Panier, A.L. Tits and J. Herskovits, A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM J. Control Optim.26 (1988) 788-810.  
  32. R. Scott, Finite element convergence for singular data. Numer. Math.21 (1973) 317-327.  
  33. M.E. Vázquez-Méndez, Contribución a la resolución numérica de modelos para el estudio de la contaminación de aguas. Master thesis. Dept. Matemática Aplicada. Univ. Santiago de Compostela, Spain (1992).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.