Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?
Alain Damlamian; Patrizia Donato
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 555-585
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Acerbi, V. Chiado' Piat, G. Dal Maso and D. Percivale, An extension theorem for connected sets, and homogenization in general periodic domains. Nonlinear Anal. TMA18 (1992) 481-495.
- G. Allaire and F. Murat, Homogenization of the Neumann problem with non-isolated holes. Asymptot. Anal.7 (1993) 81-95.
- H. Attouch, Variational convergence for functions and operators. Pitman, Boston, Appl. Math. Ser. (1984).
- N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989).
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978).
- B. Bojarski, Remarks on Sobolev imbedding inequalities, in Complex Analysis. Springer-Verlag, Lecture Notes in Math. 1351 (1988) 257-324.
- M. Briane, Poincare'-Wirtinger's inequality for the homogenization in perforated domains. Boll. Un. Mat. Ital. B11 (1997) 53-82.
- M. Briane, A. Damlamian and P. Donato, H-convergence in perforated domains, in Nonlinear Partial Differential Equations Appl., Collège de France Seminar, Vol. XIII, edited by D. Cioranescu and J.-L. Lions. Longman, New York, Pitman Res. Notes in Math. Ser. 391 (1998) 62-100.
- S. Buckley and P. Koskela, Sobolev-Poincaré implies John. Math. Res. Lett.2 (1995) 577-593.
- D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl.52 (1975) 189-219.
- D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press, Oxford Lecture Ser. in Math. Appl. 17 (1999).
- D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes. J. Math. Anal. Appl.71 (1979) 590-607.
- D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer-Verlag, Berlin, New York (1999).
- C. Conca and P. Donato, Non-homogeneous Neumann problems in domains with small holes. ESAIM: M2AN22 (1988) 561-608.
- A. Damlamian and P. Donato, Homogenization with small shape-varying perforations. SIAM J. Math. Anal.22 (1991) 639-652.
- F.W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math.45 (1985) 181-206.
- F.W. Gehring and B.G. Osgood, Uniform domains and the quasi-hyperbolic metric. J. Anal. Math.36 (1979) 50-74.
- E. Hruslov, The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain. Maths. USSR Sbornik 35 (1979).
- P. Jones, Quasiconformal mappings and extensions of functions in Sobolev spaces. Acta Math.1-2 (1981) 71-88.
- O. Martio, Definitions for uniform domains. Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980) 179-205.
- O. Martio, John domains, bilipschitz balls and Poincaré inequality. Rev. Roumaine Math. Pures Appl.33 (1988) 107-112.
- O. Martio and J. Sarvas, Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math.4 (1979) 383-401.
- V.G. Maz'ja, Sobolev spaces. Springer-Verlag, Berlin (1985).
- F. Murat, H-Convergence, Séminaire d'Analyse Fonctionnelle et Numérique (1977/1978). Université d'Alger, Multigraphed.
- F. Murat and L. Tartar, H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser, Boston (1997) 21-43.
- E. Sanchez-Palencia, Non homogeneous Media and Vibration Theory. Springer-Verlag, Lecture Notes in Phys. 127 (1980).
- W. Smith and D.A. Stegenga, Hölder domains and Poincaré domains. Trans. Amer. Math. Soc.319 (1990) 67-100.
- S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa22 (1968) 571-597.
- E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N.J. (1970).
- L. Tartar, Cours Peccot au Collège de France (1977).
- J. Väisalä, Uniform domains. Tohoku Math. J.40 (1988) 101-118.
- H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake. Manuscripta Math.73 (1991) 117-125.
- V.V. Zhikov, Connectedness and Homogenization. Examples of fractal conductivity. Sbornik Math.187 (1196) 1109-1147.