On the Lower Semicontinuity of Supremal Functionals
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 135-143
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topGori, Michele, and Maggi, Francesco. "On the Lower Semicontinuity of Supremal Functionals." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 135-143. <http://eudml.org/doc/90685>.
@article{Gori2010,
abstract = {
In this paper we study the lower semicontinuity problem for a supremal
functional of the form $F(u,\Omega )= \underset\{x\in\Omega\}\{\rm ess\,sup\} f(x,u(x),Du(x))$
with respect to the strong convergence in L∞(Ω),
furnishing a comparison with the analogous theory developed by
Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly
converging sequences is proved.
},
author = {Gori, Michele, Maggi, Francesco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = { Supremal functionals; lower semicontinuity;
level convexity; Calculus of Variations; Mazur's lemma.; supremal functionals; level convexity; Mazur lemma},
language = {eng},
month = {3},
pages = {135-143},
publisher = {EDP Sciences},
title = {On the Lower Semicontinuity of Supremal Functionals},
url = {http://eudml.org/doc/90685},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Gori, Michele
AU - Maggi, Francesco
TI - On the Lower Semicontinuity of Supremal Functionals
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 135
EP - 143
AB -
In this paper we study the lower semicontinuity problem for a supremal
functional of the form $F(u,\Omega )= \underset{x\in\Omega}{\rm ess\,sup} f(x,u(x),Du(x))$
with respect to the strong convergence in L∞(Ω),
furnishing a comparison with the analogous theory developed by
Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly
converging sequences is proved.
LA - eng
KW - Supremal functionals; lower semicontinuity;
level convexity; Calculus of Variations; Mazur's lemma.; supremal functionals; level convexity; Mazur lemma
UR - http://eudml.org/doc/90685
ER -
References
top- E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal.9 (to appear).
- L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42.
- G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)). Ark. Mat.6 (1965) 33-53.
- G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat.6 (1967) 551-561.
- G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) II. Ark. Mat.6 (1969) 409-431.
- G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) III. Ark. Mat.7 (1969) 509-512.
- E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L∞ functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 495-517.
- E.N. Barron and W. Liu, Calculus of variations in L∞. Appl. Math. Optim.35 (1997) 237-263.
- G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser.207 (1989).
- L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl.122 (1979) 1-60.
- G. Dal Maso, Integral representation on BV(Ω)of Γ-limits of variational integrals. Manuscripta Math.30 (1980) 387-416.
- E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968).
- E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend.74 (1983) 274-282.
- G. Eisen, A counterexample for some lower semicontinuity results. Math. Z.162 (1978) 241-243.
- I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J.49 (2000) 617-635.
- I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 519-565.
- M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L1. Differential Integral Equations (to appear).
- M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal.9 (2002) 1-28.
- A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim.15 (1977) 521-538.
- C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941).
- J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961) 139-167.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.