On the Lower Semicontinuity of Supremal Functionals

Michele Gori; Francesco Maggi

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 9, page 135-143
  • ISSN: 1292-8119

Abstract

top
In this paper we study the lower semicontinuity problem for a supremal functional of the form F ( u , Ω ) = ess sup x Ω f ( x , u ( x ) , D u ( x ) ) with respect to the strong convergence in L∞(Ω), furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly converging sequences is proved.

How to cite

top

Gori, Michele, and Maggi, Francesco. "On the Lower Semicontinuity of Supremal Functionals." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 135-143. <http://eudml.org/doc/90685>.

@article{Gori2010,
abstract = { In this paper we study the lower semicontinuity problem for a supremal functional of the form $F(u,\Omega )= \underset\{x\in\Omega\}\{\rm ess\,sup\} f(x,u(x),Du(x))$ with respect to the strong convergence in L∞(Ω), furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly converging sequences is proved. },
author = {Gori, Michele, Maggi, Francesco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = { Supremal functionals; lower semicontinuity; level convexity; Calculus of Variations; Mazur's lemma.; supremal functionals; level convexity; Mazur lemma},
language = {eng},
month = {3},
pages = {135-143},
publisher = {EDP Sciences},
title = {On the Lower Semicontinuity of Supremal Functionals},
url = {http://eudml.org/doc/90685},
volume = {9},
year = {2010},
}

TY - JOUR
AU - Gori, Michele
AU - Maggi, Francesco
TI - On the Lower Semicontinuity of Supremal Functionals
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 135
EP - 143
AB - In this paper we study the lower semicontinuity problem for a supremal functional of the form $F(u,\Omega )= \underset{x\in\Omega}{\rm ess\,sup} f(x,u(x),Du(x))$ with respect to the strong convergence in L∞(Ω), furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly converging sequences is proved.
LA - eng
KW - Supremal functionals; lower semicontinuity; level convexity; Calculus of Variations; Mazur's lemma.; supremal functionals; level convexity; Mazur lemma
UR - http://eudml.org/doc/90685
ER -

References

top
  1. E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal.9 (to appear).  
  2. L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42.  
  3. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)). Ark. Mat.6 (1965) 33-53.  
  4. G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat.6 (1967) 551-561.  
  5. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) II. Ark. Mat.6 (1969) 409-431.  
  6. G. Aronsson, Minimization problems for the functional supxF(x,f(x),f'(x)) III. Ark. Mat.7 (1969) 509-512.  
  7. E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L∞ functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 495-517.  
  8. E.N. Barron and W. Liu, Calculus of variations in L∞. Appl. Math. Optim.35 (1997) 237-263.  
  9. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser.207 (1989).  
  10. L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl.122 (1979) 1-60.  
  11. G. Dal Maso, Integral representation on BV(Ω)of Γ-limits of variational integrals. Manuscripta Math.30 (1980) 387-416.  
  12. E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968).  
  13. E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend.74 (1983) 274-282.  
  14. G. Eisen, A counterexample for some lower semicontinuity results. Math. Z.162 (1978) 241-243.  
  15. I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J.49 (2000) 617-635.  
  16. I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 519-565.  
  17. M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L1. Differential Integral Equations (to appear).  
  18. M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal.9 (2002) 1-28.  
  19. A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim.15 (1977) 521-538.  
  20. C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941).  
  21. J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961) 139-167.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.