# Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume

Habib Ammari; Shari Moskow; Michael S. Vogelius

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 9, page 49-66
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topAmmari, Habib, Moskow, Shari, and Vogelius, Michael S.. "Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 49-66. <http://eudml.org/doc/90708>.

@article{Ammari2010,

abstract = {
In this paper we discuss the approximate reconstruction
of inhomogeneities of small volume. The data used for the
reconstruction consist of boundary integrals of the
(observed) electromagnetic fields. The numerical algorithms
discussed are based on highly accurate asymptotic formulae for the
electromagnetic fields in the presence of small volume
inhomogeneities.
},

author = {Ammari, Habib, Moskow, Shari, Vogelius, Michael S.},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Electromagnetic imaging; small inhomogeneities; numerical reconstruction algorithms.; electromagnetic imaging; numerical reconstruction algorithms},

language = {eng},

month = {3},

pages = {49-66},

publisher = {EDP Sciences},

title = {Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume},

url = {http://eudml.org/doc/90708},

volume = {9},

year = {2010},

}

TY - JOUR

AU - Ammari, Habib

AU - Moskow, Shari

AU - Vogelius, Michael S.

TI - Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 9

SP - 49

EP - 66

AB -
In this paper we discuss the approximate reconstruction
of inhomogeneities of small volume. The data used for the
reconstruction consist of boundary integrals of the
(observed) electromagnetic fields. The numerical algorithms
discussed are based on highly accurate asymptotic formulae for the
electromagnetic fields in the presence of small volume
inhomogeneities.

LA - eng

KW - Electromagnetic imaging; small inhomogeneities; numerical reconstruction algorithms.; electromagnetic imaging; numerical reconstruction algorithms

UR - http://eudml.org/doc/90708

ER -

## References

top- H. Ammari, M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell Equations. J. Math. Pures Appl.80 (2001) 769-814.
- S. Andrieux and A. Ben Abda, Identification of planar cracks by complete overdetermined data: Inversion formulae. Inverse Problems12 (1996) 553-563.
- S. Andrieux, A. Ben Abda and M. Jaoua, On the inverse emerging plane crack problem. Math. Meth. Appl. Sci.21 (1998) 895-907.
- H.D. Bui, A. Constantinescu and H. Maigre, Diffraction acoustique inverse de fissure plane : solution explicite pour un solide borné. C. R. Acad. Sci. Paris Sér. II327 (1999) 971-976.
- E. Beretta, A. Mukherjee and M. Vogelius, Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfection of small area. ZAMP52 (2001) 543-572.
- M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities. Preprint (2001).
- A.P. Calderon, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics. Soc. Brasileira de Matemática, Rio de Janeiro (1980) 65-73.
- D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity inperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems14 (1998) 553-595.
- I. Daubechies, Ten Lectures on Wavelets. SIAM, Philadelphia (1992).
- G.B. Folland, Introduction to Partial Differential Equations. Princeton University Press, Princeton (1976).
- A. Friedman and M. Vogelius, Identification of Small Inhomogeneities of Extreme Conductivity by Boundary Measurements: A Theorem on Continuous Dependence. Arch. Rational Mech. Anal.105 (1989) 299-326.
- S. He and V.G. Romanov, Identification of small flaws in conductors using magnetostatic measurements. Math. Comput. Simul.50 (1999) 457-471.
- M.S. Joshi and S.R. McDowall, Total determination of material parameters from electromagnetic boundary information. Pacific J. Math. (to appear).
- K. Miller, Stabilized numerical analytic prolongation with poles. SIAM J. Appl. Math.18 (1970) 346-363.
- P. Ola, L. Païvärinta and E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J.70 (1993) 617-653.
- M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM: M2AN34 (2000) 723-748.
- D. Volkov, An inverse problem for the time harmonic Maxwell Equations, Ph.D. Thesis. Rutgers University (2001).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.