Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent

Martin Schechter; Wenming Zou

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 9, page 601-619
  • ISSN: 1292-8119

Abstract

top
In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c, we show that this equation has a nontrivial solution.

How to cite

top

Schechter, Martin, and Zou, Wenming. "Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 601-619. <http://eudml.org/doc/90713>.

@article{Schechter2010,
abstract = { In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^\{2^\ast-2\}u+g(x, u), u\in W^\{1,2\}(\{\bf R\}^N)$, where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If $0<g(x, u)u\leq c|u|^\{2^\ast\}$ for an appropriate constant c, we show that this equation has a nontrivial solution. },
author = {Schechter, Martin, Zou, Wenming},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Linking; Schrödinger equations; critical Sobolev exponent.; linking; critical Sobolev exponent},
language = {eng},
month = {3},
pages = {601-619},
publisher = {EDP Sciences},
title = {Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent},
url = {http://eudml.org/doc/90713},
volume = {9},
year = {2010},
}

TY - JOUR
AU - Schechter, Martin
AU - Zou, Wenming
TI - Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 601
EP - 619
AB - In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^{2^\ast-2}u+g(x, u), u\in W^{1,2}({\bf R}^N)$, where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If $0<g(x, u)u\leq c|u|^{2^\ast}$ for an appropriate constant c, we show that this equation has a nontrivial solution.
LA - eng
KW - Linking; Schrödinger equations; critical Sobolev exponent.; linking; critical Sobolev exponent
UR - http://eudml.org/doc/90713
ER -

References

top
  1. S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations96 (1992) 89-115.  Zbl0766.35009
  2. S. Alama and Y.Y. Li, On ``multibump" bound states for certain semilinear elliptic equations. Indiana J. Math.41 (1992) 983-1026.  Zbl0796.35043
  3. T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential. Math. Ann.313 (1999) 15-37.  Zbl0927.35103
  4. V. Benci and G. Cerami, Existence of positive solutions of the equation - Δ u + a ( x ) u = u ( N + 2 ) / ( N - 2 ) in 𝐑 N . J. Funct. Anal.88 (1990) 90-117.  Zbl0705.35042
  5. B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc.119 (1993) 179-186.  Zbl0789.35052
  6. J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University.  Zbl0984.35150
  7. J. Chabrowski and J. Yang, On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal.12 (1998) 245-261.  Zbl0931.35052
  8. V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on 𝐑 N . Comm. Pure Appl. Math.45 (1992) 1217-1269.  Zbl0785.35029
  9. N. Dunford and J.T. Schwartz, Linear Operators. Part I. Interscience (1967).  
  10. L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations112 (1994) 53-80.  Zbl0804.35033
  11. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on 𝐑 N . Proc. Roy. Soc. Edinburgh Sect. A129 (1999) 787-809.  Zbl0935.35044
  12. W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations3 (1998) 441-472.  Zbl0947.35061
  13. P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993).  Zbl0789.35002
  14. Y.Y. Li, On - Δ u = K ( x ) u 5 in 𝐑 3 . Comm. Pure Appl. Math.46 (1993) 303-340.  Zbl0799.35068
  15. Y.Y. Li, Prescribing scalar curvature on Sn and related problems. Part I. J. Differential Equations120 (1995) 319-410.  Zbl0827.53039
  16. P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 223-283.  Zbl0704.49004
  17. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV. Academic Press (1978).  Zbl0401.47001
  18. M. Schechter, Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math.51 (1998) 1247-1254.  Zbl0942.58024
  19. M. Schechter, Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998).  
  20. M. Schechter, Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999).  Zbl0915.35001
  21. M. Struwe, The existence of surfaces of constant mean curvature with free boundaries. Acta Math.160 (1988) 19-64.  Zbl0646.53005
  22. C.A. Stuart, Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995).  Zbl0864.47037
  23. A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal.187 (2001) 25-41.  Zbl0984.37072
  24. C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations21 (1996) 1431-1449.  Zbl0864.35036
  25. M. Willem and W. Zou, On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J.52 (2003) 109-132.  Zbl1030.35068
  26. M. Willem, Minimax Theorems. Birkhäuser, Boston (1996).  
  27. W. Zou, Solitary Waves of the Generalized Kadomtsev-Petviashvili Equations. Appl. Math. Lett.15 (2002) 35-39.  Zbl1016.35062
  28. W. Zou, Variant Fountain Theorems and their Applications. Manuscripta Math.104 (2001) 343-358.  Zbl0976.35026
  29. M. Schechter, Some recent results in critical point theory. Pan Amer. Math. J.12 (2002) 1-19.  Zbl1152.58303
  30. M. Schechter and W. Zou, Homoclinic Orbits for Schrödinger Systems. Michigan Math. J.51 (2003) 59-71.  Zbl1195.35281
  31. M. Schechter and W. Zou, Superlinear Problem. Pacific J. Math. (accepted).  
  32. W. Zou and S. Li, New Linking Theorem and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA52 (2003) 1797-1820.  Zbl1022.35016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.