Invariant tracking
Philippe Martin; Pierre Rouchon; Joachim Rudolph
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 1, page 1-13
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMartin, Philippe, Rouchon, Pierre, and Rudolph, Joachim. "Invariant tracking." ESAIM: Control, Optimisation and Calculus of Variations 10.1 (2010): 1-13. <http://eudml.org/doc/90719>.
@article{Martin2010,
abstract = {
The problem of invariant output tracking is considered: given a control system
admitting a symmetry group G, design a feedback such that the
closed-loop system tracks a desired output reference and is invariant under the action of G.
Invariant output errors are defined as a set
of scalar invariants of G; they are calculated with the Cartan moving frame
method. It is shown that standard tracking methods based on input-output linearization can be applied to
these invariant errors to yield the required “symmetry-preserving” feedback.
},
author = {Martin, Philippe, Rouchon, Pierre, Rudolph, Joachim},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Symmetries; invariants; nonlinear control; output
tracking; decoupling.; output tracking; decoupling},
language = {eng},
month = {3},
number = {1},
pages = {1-13},
publisher = {EDP Sciences},
title = {Invariant tracking},
url = {http://eudml.org/doc/90719},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Martin, Philippe
AU - Rouchon, Pierre
AU - Rudolph, Joachim
TI - Invariant tracking
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 1
SP - 1
EP - 13
AB -
The problem of invariant output tracking is considered: given a control system
admitting a symmetry group G, design a feedback such that the
closed-loop system tracks a desired output reference and is invariant under the action of G.
Invariant output errors are defined as a set
of scalar invariants of G; they are calculated with the Cartan moving frame
method. It is shown that standard tracking methods based on input-output linearization can be applied to
these invariant errors to yield the required “symmetry-preserving” feedback.
LA - eng
KW - Symmetries; invariants; nonlinear control; output
tracking; decoupling.; output tracking; decoupling
UR - http://eudml.org/doc/90719
ER -
References
top- A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal.136 (1996) 21-99.
- F. Bullo and R.M. Murray, Tracking for fully actuated mechanical systems: A geometric framework. Automatica35 (1999) 17-34.
- E. Delaleau and P.S. Pereira da Silva, Filtrations in feedback synthesis: Part I – Systems and feedbacks. Forum Math.10 (1998) 147-174.
- J. Descusse and C.H. Moog, Dynamic decoupling for right invertible nonlinear systems. Systems Control Lett.8 (1988) 345-349.
- F. Fagnani and J. Willems, Representations of symmetric linear dynamical systems. SIAM J. Control Optim.31 (1993) 1267-1293.
- J.W. Grizzle and S.I. Marcus, The structure of nonlinear systems possessing symmetries. IEEE Trans. Automat. Control30 (1985) 248-258.
- A. Isidori, Nonlinear Control Systems, 2nd Edition. Springer, New York (1989).
- B. Jakubczyk, Symmetries of nonlinear control systems and their symbols, in Canadian Math. Conf. Proceed., Vol. 25 (1998) 183-198.
- W.S. Koon and J.E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control Optim.35 (1997) 901-929.
- J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994).
- Ph. Martin, R. Murray and P. Rouchon, Flat systems, in Proc. of the 4th European Control Conf.. Brussels (1997) 211-264. Plenary lectures and Mini-courses.
- H. Nijmeijer, Right-invertibility for a class of nonlinear control systems: A geometric approach. Systems Control Lett.7 (1986) 125-132.
- H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag (1990).
- P.J. Olver, Equivalence, Invariants and Symmetry. Cambridge University Press (1995).
- P.J. Olver, Classical Invariant Theory. Cambridge University Press (1999).
- W. Respondek and H. Nijmeijer, On local right-invertibility of nonlinear control system. Control Theory Adv. Tech.4 (1988) 325-348.
- W. Respondek and I.A. Tall, Nonlinearizable single-input control systems do not admit stationary symmetries. Systems Control Lett.46 (2002) 1-16.
- P. Rouchon and J. Rudolph, Invariant tracking and stabilization: problem formulation and examples. Springer, Lecture Notes in Control and Inform. Sci. 246 (1999) 261-273.
- A.J. van der Schaft, Symmetries in optimal control. SIAM J. Control Optim.25 (1987) 245-259.
- C. Woernle, Flatness-based control of a nonholonomic mobile platform. Z. Angew. Math. Mech.78 (1998) 43-46.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.