A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 2, page 201-210
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMariconda, Carlo, and Treu, Giulia. "A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand ." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2010): 201-210. <http://eudml.org/doc/90725>.
@article{Mariconda2010,
abstract = {
Let $L:\Bbb R^N\times\Bbb R^N\rightarrow\Bbb R$ be a Borelian function and
consider the following problems
$$
\inf\left\\{F(y)=\int\_a^bL(y(t),y'(t))\,\{\rm d\}t:\,y\in AC([a,b],\Bbb R^N),
y(a)=A,\,y(b)=B\right\\} \qquad\quad\! (P)
$$
$$
\inf\left\\{F^\{**\}(y)=\int\_a^bL^\{**\}(y(t),y'(t))\,\{\rm d\}t:\,y\in AC([a,b],\Bbb R^N),
y(a)=A,\,y(b)=B\right\\}\cdot \quad\;\ \! (P^\{**\})
$$
We give a sufficient condition, weaker then superlinearity, under
which $\inf F=\inf F^\{**\}$ if L is just continuous in x. We
then extend a result of Cellina on the Lipschitz regularity of
the minima of (P) when L is not superlinear.
},
author = {Mariconda, Carlo, Treu, Giulia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Lipschitz; regularity; non-coercive; discontinuous; calculus of variations.; non-coercivity; discontinuous integrand; relaxation; integral functional},
language = {eng},
month = {3},
number = {2},
pages = {201-210},
publisher = {EDP Sciences},
title = {A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand },
url = {http://eudml.org/doc/90725},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Mariconda, Carlo
AU - Treu, Giulia
TI - A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 2
SP - 201
EP - 210
AB -
Let $L:\Bbb R^N\times\Bbb R^N\rightarrow\Bbb R$ be a Borelian function and
consider the following problems
$$
\inf\left\{F(y)=\int_a^bL(y(t),y'(t))\,{\rm d}t:\,y\in AC([a,b],\Bbb R^N),
y(a)=A,\,y(b)=B\right\} \qquad\quad\! (P)
$$
$$
\inf\left\{F^{**}(y)=\int_a^bL^{**}(y(t),y'(t))\,{\rm d}t:\,y\in AC([a,b],\Bbb R^N),
y(a)=A,\,y(b)=B\right\}\cdot \quad\;\ \! (P^{**})
$$
We give a sufficient condition, weaker then superlinearity, under
which $\inf F=\inf F^{**}$ if L is just continuous in x. We
then extend a result of Cellina on the Lipschitz regularity of
the minima of (P) when L is not superlinear.
LA - eng
KW - Lipschitz; regularity; non-coercive; discontinuous; calculus of variations.; non-coercivity; discontinuous integrand; relaxation; integral functional
UR - http://eudml.org/doc/90725
ER -
References
top- G. Alberti and F. Serra Cassano, Non-occurrence of gap for one-dimensional autonomous functionals. Ser. Adv. Math. Appl. Sci. Calculus of variations, homogenization and continuum mechanics18 (1993) 1-17.
- M. Amar, G. Bellettini and S. Venturini, Integral representation of functionals defined on curves of W1,p. Proc. R. Soc. Edinb. Sect. A128 (1998) 193-217.
- L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl.142 (1989) 301-316.
- G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes Math. Ser.207 (1989).
- A. Cellina, The classical problem of the calculus of variations in the autonomous case: Relaxation and lipschitzianity of solutions. Preprint (2001).
- G. Dal Maso and H. Frankowska, Autonomous Integral Functionals with Discontinuous Nonconvex Integrands: Lipschitz Regularity of Minimizers, DuBois-Reymond Necessary Conditions, and Hamilton-Jacobi Equations. Preprint (2002).
- I. Ekeland and R. Témam, Convex analysis and variational problems. Classics Appl. Math.28 (1999).
- C. Mariconda and G. Treu, Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth. Dipartimento di Matematica pura e applicata, Università di Padova 10 (2003) preprint.
- W. Rudin, Functional analysis. International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York (1991).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.