Homogenization of micromagnetics large bodies
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 2, page 295-314
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPisante, Giovanni. "Homogenization of micromagnetics large bodies." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2010): 295-314. <http://eudml.org/doc/90731>.
@article{Pisante2010,
abstract = {
A homogenization problem related to the micromagnetic energy functional is studied. In particular, the existence of the integral representation for the homogenized limit of a family of energies
$$ \mathcal\{E\}\_\{\varepsilon\}(m)=\int\_\{\Omega\} \phi\left(x,\frac\{x\}\{\varepsilon\},m(x)\right)\,\{\rm d\}x
-\int\_\{\Omega\}h\_e(x)\cdot m(x)\,\{\rm d\}x+\frac\{1\}\{2\}\int\_\{\mathbb R^3\}|\nabla u(x)|^2\,\{\rm d\}x
$$
of a large ferromagnetic body is obtained.
},
author = {Pisante, Giovanni},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Micromagnetics; homogenization; Γ-convergence.; micromagnetics; integral representation; homgenized limit},
language = {eng},
month = {3},
number = {2},
pages = {295-314},
publisher = {EDP Sciences},
title = {Homogenization of micromagnetics large bodies},
url = {http://eudml.org/doc/90731},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Pisante, Giovanni
TI - Homogenization of micromagnetics large bodies
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 2
SP - 295
EP - 314
AB -
A homogenization problem related to the micromagnetic energy functional is studied. In particular, the existence of the integral representation for the homogenized limit of a family of energies
$$ \mathcal{E}_{\varepsilon}(m)=\int_{\Omega} \phi\left(x,\frac{x}{\varepsilon},m(x)\right)\,{\rm d}x
-\int_{\Omega}h_e(x)\cdot m(x)\,{\rm d}x+\frac{1}{2}\int_{\mathbb R^3}|\nabla u(x)|^2\,{\rm d}x
$$
of a large ferromagnetic body is obtained.
LA - eng
KW - Micromagnetics; homogenization; Γ-convergence.; micromagnetics; integral representation; homgenized limit
UR - http://eudml.org/doc/90731
ER -
References
top- G. Anzellotti, S. Baldo and A. Visintin, Asymptotic behavior of the Landau-Lifshitz model of ferromagnetism. Appl. Math. Optim.23 (1991) 171-192.
- J.M. Ball, A. Taheri and M. Winter, Local minimizers in micromagnetics and related problems. Calc. Var. Partial Differ. Equ.14 (2002) 1-27.
- A. Braides and A. Defranceschi, Homogenization of multiple integrals. The Clarendon Press Oxford University Press, New York, Oxford Lecture Ser. Math. Appl.12 (1998).
- A. Braides, I. Fonseca and G. Leoni, A-quasiconvexity: relaxation and homogenization. ESAIM: COCV5 (2000) 539-577 (electronic).
- Jr. Brown and W. Fuller, Micromagnetics. Interscience Publishers, John Wiley & Sons, New York, London (1963).
- B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci.78 (1989).
- B. Dacorogna and I. Fonseca, A-B quasiconvexity and implicit partial differential equations. Calc. Var. Partial Differ. Equ.14 (2002) 115-149.
- G. Dal Maso, An introduction to -convergence. Birkhäuser Boston Inc., Boston, MA Prog. Nonlinear Differ. Equ. Appl.8 (1993).
- A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal.125 (1993) 99-143.
- A. De Simone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica30 (1995) 591-603. Microstructure and phase transitions in solids (Udine, 1994).
- A. De simone, R.V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math.55 (2002) 1408-1460.
- A. De Simone, S. Müller, R.V. Kohn and F. Otto, A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A131 (2001) 833-844.
- I. Fonseca and G. Leoni, Relaxation results in micromagnetics. Ricerche Mat.49 (2000) (suppl.) 269-304. Contributions in honor of the memory of Ennio De Giorgi (Italian).
- R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials. Contin. Mech. Thermodyn.2 (1990) 215-239.
- L.D. Landau and E.M. Lifshits, Teoreticheskaya fizika. Tome VIII. “Nauka”, Moscow, third edition (1992). Elektrodinamika sploshnykh sred. [Electrodynamics of continuous media], with a preface by Lifshits and L.P. Pitaevskiĭ, edited and with a preface by Pitaevskiĭ.
- L. Tartar, On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures. Plenum, New York, in Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991), (1992) 201-217.
- L. Tartar, Beyond Young measures. Meccanica30 (1995) 505-526. Microstructure and phase transitions in solids (Udine, 1994).
- A. Visintin, On Landau-Lifshitz' equations for ferromagnetism. Japan J. Appl. Math.2 (1985) 69-84.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.