Generic existence result for an eigenvalue problem with rapidly growing principal operator
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 4, page 677-691
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topLe, Vy Khoi. "Generic existence result for an eigenvalue problem with rapidly growing principal operator." ESAIM: Control, Optimisation and Calculus of Variations 10.4 (2010): 677-691. <http://eudml.org/doc/90751>.
@article{Le2010,
abstract = {
We consider the eigenvalue problem
$$
\begin\{array\}\{l\}
\displaystyle-\{\rm div\} (a(|\nabla u |)\nabla u) = \lambda g(x, u) \;\mbox\{ in \} \Omega
u = 0 \;\mbox\{ on \} \partial\Omega ,
\end\{array\}
$$
in the case where the principal operator has rapid growth. By using a variational approach, we show that under
certain conditions, almost all λ > 0 are eigenvalues.
},
author = {Le, Vy Khoi},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Quasilinear elliptic equation; generic existence; variational inequality; rapidly growing operator.; quasilinear elliptic equation; rapidly growing operator},
language = {eng},
month = {3},
number = {4},
pages = {677-691},
publisher = {EDP Sciences},
title = {Generic existence result for an eigenvalue problem with rapidly growing principal operator},
url = {http://eudml.org/doc/90751},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Le, Vy Khoi
TI - Generic existence result for an eigenvalue problem with rapidly growing principal operator
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 4
SP - 677
EP - 691
AB -
We consider the eigenvalue problem
$$
\begin{array}{l}
\displaystyle-{\rm div} (a(|\nabla u |)\nabla u) = \lambda g(x, u) \;\mbox{ in } \Omega
u = 0 \;\mbox{ on } \partial\Omega ,
\end{array}
$$
in the case where the principal operator has rapid growth. By using a variational approach, we show that under
certain conditions, almost all λ > 0 are eigenvalues.
LA - eng
KW - Quasilinear elliptic equation; generic existence; variational inequality; rapidly growing operator.; quasilinear elliptic equation; rapidly growing operator
UR - http://eudml.org/doc/90751
ER -
References
top- R. Adams, Sobolev spaces. Academic Press, New York (1975).
- A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal.14 (1973) 349-381.
- K.C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl.80 (1981) 102-129.
- F.H. Clarke, Optimization and nonsmooth analysis. SIAM, Philadelphia (1990).
- P. Clément, M. García-Huidobro, R. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations. Calc. Var.11 (2000) 33-62.
- T. Donaldson, Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Diff. Equations10 (1971) 507-528.
- T. Donaldson and N. Trudinger, Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal.8 (1971) 52-75.
- M. García-Huidobro, V.K. Le, R. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlinear Diff. Eq. Appl.6 (1999) 207-225.
- J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Amer. Math. Soc.190 (1974) 163-205.
- J.P. Gossez and R. Manásevich, On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A132 (2002) 891-909.
- J.P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Anal.11 (1987) 379-392.
- L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on . Proc. Roy. Soc. Edinb. A129 (1999) 787-809.
- L. Jeanjean and J.F. Toland, Bounded Palais-Smale mountain-pass sequences. C.R. Acad. Sci. Paris Ser. I Math.327 (1998) 23-28.
- N.C. Kourogenis and N.S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Ser. A)69 (2000) 245-271.
- M.A. Krasnosels'kii and J. Rutic'kii, Convex functions and Orlicz spaces. Noorhoff, Groningen (1961).
- A. Kufner, O. John and S. Fučic, Function spaces. Noordhoff, Leyden (1977).
- V.K. Le, A global bifurcation result for quasilinear eliptic equations in Orlicz-Sobolev space. Topol. Methods Nonlinear Anal.15 (2000) 301-327.
- V.K. Le, Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts. J. Diff. Int. Eq.15 (2002) 839-862.
- V.K. Le and K. Schmitt, Quasilinear elliptic equations and inequalities with rapidly growing coefficients. J. London Math. Soc.62 (2000) 852-872.
- V. Mustonen and M. Tienari, An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A129 (1999) 153-163.
- V. Mustonen, Remarks on inhomogeneous elliptic eigenvalue problems. Part. Differ. Equ. Lect. Notes Pure Appl. Math.229 (2002) 259-265.
- Z. Naniewicz and P.D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications. Marcel Dekker, New York (1995).
- P. Rabinowitz, Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math.3 (1973) 162-202.
- M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface. Bol. Soc. Brasil Mat.20 (1990) 49-58.
- M. Struwe, Variational methods. 2nd ed., Springer, Berlin (1991).
- M. Tienari, Ljusternik-Schnirelmann theorem for the generalized Laplacian. J. Differ. Equations161 (2000) 174-190.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.