Homogenization of evolution problems for a composite medium with very small and heavy inclusions
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 11, Issue: 2, page 266-284
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Bellieud, Homogenization of evolution problems in a fiber reinforced structure. J. Convex Anal.11 (2004) 363–385.
- M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects. Ann. Scuola Norm. Sup. Cl. Sci. IV26 (1998) 407–436.
- M. Bellieud and I. Gruais, Homogénéisation d'une structure élastique renforcée de fibres très rigides. Effets non locaux. C. R. Math., Problèmes mathématiques de la mécanique337 (2003) 493–498.
- M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects. J. Math. Pures Appl.84 (2005) 55–96.
- H. Brezis, Analyse fonctionnelle. Masson, Paris (1983).
- G. Dal Maso, An introduction to -Convergence. Progress Nonlinear Differential Equations Appl., Birkhäuser, Boston (1993).
- E.Y. Khruslov, Homogenized models of composite media. Progress Nonlinear Differential Equations Appl., Birkhäuser (1991).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1 (1968).
- U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal.123 (1994) 368–421.
- G. Panasenko, Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid inclusions. C. R. Acad. Sci. Paris I321 (1995) 1109–1114.