Optimal control of delay systems with differential and algebraic dynamic constraints
Boris S. Mordukhovich; Lianwen Wang
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 11, Issue: 2, page 285-309
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- K.E. Brennan, S.L. Campbell and L.R. Pretzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations. North-Holland, New York (1989).
- E.N. Devdariani and Yu.S. Ledyaev, Maximum principle for implicit control systems. Appl. Math. Optim.40 (1999) 79–103.
- A.L. Dontchev and E.M. Farhi, Error estimates for discretized differential inclusions. Computing41 (1989) 349–358.
- M. Kisielewicz, Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991).
- B.S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech.40 (1976) 960–969.
- B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control. Nauka, Moscow (1988).
- B.S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc.340 (1993) 1–35.
- B.S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Optim.33 (1995) 882–915.
- B.S. Mordukhovich, J.S. Treiman and Q.J. Zhu, An extended extremal principle with applications to multiobjective optimization. SIAM J. Optim.14 (2003) 359–379.
- B.S. Mordukhovich and R. Trubnik, Stability of discrete approximation and necessary optimality conditions for delay-differential inclusions. Ann. Oper. Res.101 (2001) 149–170.
- B.S. Mordukhovich and L. Wang, Optimal control of constrained delay-differential inclusions with multivalued initial condition. Control Cybernet.32 (2003) 585–609.
- B.S. Mordukhovich and L. Wang, Optimal control of neutral functional-differential inclusions. SIAM J. Control Optim.43 (2004) 116-136.
- B.S. Mordukhovich and L. Wang, Optimal control of differential-algebraic inclusions, in Optimal Control, Stabilization, and Nonsmooth Analysis, M. de Queiroz et al., Eds., Lectures Notes in Control and Information Sciences, Springer-Verlag, Heidelberg 301 (2004) 73–83.
- M.D.R. de Pinho and R.B. Vinter, Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl.212 (1997) 493–516.
- C. Pantelides, D. Gritsis, K.P. Morison and R.W.H. Sargent, The mathematical modelling of transient systems using differential-algebraic equations. Comput. Chem. Engrg.12 (1988) 449–454.
- R.T. Rockafellar, Equivalent subgradient versions of Hamiltonian and Euler–Lagrange conditions in variational analysis. SIAM J. Control Optim.34 (1996) 1300–1314.
- R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1998).
- G.V. Smirnov, Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence, RI (2002).
- R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000).
- J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972).