Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions

Silvia Cingolani; Louis Jeanjean; Simone Secchi

ESAIM: Control, Optimisation and Calculus of Variations (2008)

  • Volume: 15, Issue: 3, page 653-675
  • ISSN: 1292-8119

Abstract

top
In this work we consider the magnetic NLS equation ( i - A ( x ) ) 2 u + V ( x ) u - f ( | u | 2 ) u = 0 in N ( 0 . 1 ) where N 3 , A : N N is a magnetic potential, possibly unbounded, V : N is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution u : N to (0.1), under conditions on the nonlinearity which are nearly optimal.

How to cite

top

Cingolani, Silvia, Jeanjean, Louis, and Secchi, Simone. "Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions." ESAIM: Control, Optimisation and Calculus of Variations 15.3 (2008): 653-675. <http://eudml.org/doc/90931>.

@article{Cingolani2008,
abstract = { In this work we consider the magnetic NLS equation $$ ( \frac\{\hbar\}\{i\} \nabla -A(x))^2 u + V(x)u - f(|u|^2)u \, = 0 \, \qquad \mbox\{ in \} \mathbb\{R\}^N\qquad\qquad(0.1)$$ where $N \geq 3$, $A \colon \mathbb\{R\}^N \to \mathbb\{R\}^N$ is a magnetic potential, possibly unbounded, $V \colon \mathbb\{R\}^N \to \mathbb\{R\}$ is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution $u\colon \mathbb\{R\}^N \to \mathbb\{C\}$ to (0.1), under conditions on the nonlinearity which are nearly optimal. },
author = {Cingolani, Silvia, Jeanjean, Louis, Secchi, Simone},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Nonlinear Schrödinger equations; magnetic fields; multi-peaks; nonlinear Schrödinger equations; multi-peaks},
language = {eng},
month = {8},
number = {3},
pages = {653-675},
publisher = {EDP Sciences},
title = {Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions},
url = {http://eudml.org/doc/90931},
volume = {15},
year = {2008},
}

TY - JOUR
AU - Cingolani, Silvia
AU - Jeanjean, Louis
AU - Secchi, Simone
TI - Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2008/8//
PB - EDP Sciences
VL - 15
IS - 3
SP - 653
EP - 675
AB - In this work we consider the magnetic NLS equation $$ ( \frac{\hbar}{i} \nabla -A(x))^2 u + V(x)u - f(|u|^2)u \, = 0 \, \qquad \mbox{ in } \mathbb{R}^N\qquad\qquad(0.1)$$ where $N \geq 3$, $A \colon \mathbb{R}^N \to \mathbb{R}^N$ is a magnetic potential, possibly unbounded, $V \colon \mathbb{R}^N \to \mathbb{R}$ is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution $u\colon \mathbb{R}^N \to \mathbb{C}$ to (0.1), under conditions on the nonlinearity which are nearly optimal.
LA - eng
KW - Nonlinear Schrödinger equations; magnetic fields; multi-peaks; nonlinear Schrödinger equations; multi-peaks
UR - http://eudml.org/doc/90931
ER -

References

top
  1. A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal.140 (1997) 285–300.  Zbl0896.35042
  2. A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal.159 (2001) 253–271.  Zbl1040.35107
  3. G. Arioli and A. Szulkin, A semilinear Schrödinger equations in the presence of a magnetic field. Arch. Ration. Mech. Anal.170 (2003) 277–295.  Zbl1051.35082
  4. S. Barile, S. Cingolani and S. Secchi, Single-peaks for a magnetic Schrödinger equation with critical growth. Adv. Diff. Equations11 (2006) 1135–1166.  Zbl1146.35411
  5. T. Bartsch, E.N. Dancer and S. Peng, On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv. Diff. Equations11 (2006) 781–812.  Zbl1146.35081
  6. H. Berestycki and P.L. Lions, Nonlinear scalar field equation I. Arch. Ration. Mech. Anal.82 (1983) 313–346.  Zbl0533.35029
  7. J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal.185 (2007) 185–200.  Zbl1132.35078
  8. J. Byeon and L. Jeanjean, Erratum: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. DOI .  Zbl1173.35636DOI10.1007/s00205-006-0019-3
  9. J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Cont. Dyn. Systems19 (2007) 255–269.  Zbl1155.35089
  10. J. Byeon and Z.-Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations. Arch. Rat. Mech. Anal.165 (2002) 295–316.  Zbl1022.35064
  11. J. Byeon and Z.-Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ.18 (2003) 207–219.  Zbl1073.35199
  12. J. Byeon, L. Jeanjean and K. Tanaka, Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Comm. Partial Diff. Eq.33 (2008) 1113–1136.  Zbl1155.35344
  13. D. Cao and E.-S. Noussair, Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. J. Diff. Eq.203 (2004) 292–312.  Zbl1063.35142
  14. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes. AMS (2003).  
  15. J. Chabrowski and A. Szulkin, On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. Methods Nonlinear Anal.25 (2005) 3–21.  Zbl1176.35022
  16. S. Cingolani, Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Diff. Eq.188 (2003) 52–79.  Zbl1062.81056
  17. S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Diff. Eq.160 (2000) 118–138.  Zbl0952.35043
  18. S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations. Proc. Royal Soc. Edinburgh128 (1998) 1249–1260.  Zbl0922.35158
  19. S. Cingolani and S. Secchi, Semiclassical limit for nonlinear Schrödinger equations with electromagnetic fields. J. Math. Anal. Appl.275 (2002) 108–130.  Zbl1014.35087
  20. S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magnetic potentials having polynomial growths. J. Math. Phys.46 (2005) 1–19.  Zbl1110.81081
  21. M. Clapp, R. Iturriaga and A. Szulkin, Periodic solutions to a nonlinear Schrödinger equations with periodic magnetic field. Preprint.  Zbl1182.35203
  22. V. Coti-Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc.4 (1991) 693–727.  Zbl0744.34045
  23. V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on N . Comm. Pure Appl. Math.45 (1992) 1217–1269.  Zbl0785.35029
  24. M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ.4 (1996) 121–137.  Zbl0844.35032
  25. M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal.149 (1997) 245–265.  Zbl0887.35058
  26. M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 127–149.  Zbl0901.35023
  27. M.J. Esteban and P.L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in PDE and Calculus of Variations, in honor of E. De Giorgi, Birkhäuser (1990).  
  28. A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal.69 (1986) 397–408.  Zbl0613.35076
  29. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Grundlehren224. Springer, Berlin, Heidelberg, New York and Tokyo (1983).  Zbl0562.35001
  30. C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations. Comm. Partial Diff. Eq.21 (1996) 787–820.  Zbl0857.35116
  31. H. Hajaiej and C.A. Stuart, On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation. Advances Nonlinear Studies4 (2004) 469–501.  Zbl1068.35155
  32. L. Jeanjean and K. Tanaka, A remark on least energy solutions in N . Proc. Amer. Math. Soc.131 (2003) 2399–2408.  Zbl1094.35049
  33. L. Jeanjean and K. Tanaka, A note on a mountain pass characterization of least energy solutions. Advances Nonlinear Studies3 (2003) 461–471.  Zbl1095.35006
  34. L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asympotically linear nonlinearities. Calc. Var. Partial Diff. Equ.21 (2004) 287–318.  Zbl1060.35012
  35. K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal.41 (2000) 763–778.  Zbl0993.35081
  36. Y.Y. Li, On a singularly perturbed elliptic equation. Adv. Diff. Equations2 (1997) 955–980.  Zbl1023.35500
  37. P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 223–283.  Zbl0704.49004
  38. Y.G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations. Comm. Partial Diff. Eq.13 (1988) 1499–1519.  Zbl0702.35228
  39. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Springer-Verlag, New York, Berlin, Heidelberg and Tokyo (1984).  Zbl0549.35002
  40. P. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys.43 (1992) 270–291.  Zbl0763.35087
  41. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II. Academic press, New York (1972).  Zbl0242.46001
  42. S. Secchi and M. Squassina, On the location of spikes for the Schrödinger equations with electromagnetic field. Commun. Contemp. Math.7 (2005) 251–268.  Zbl1157.35482
  43. W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys.55 (1977) 149–162.  Zbl0356.35028
  44. M. Struwe, Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag (1990).  Zbl0746.49010
  45. X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equation with competing potential functions. SIAM J. Math. Anal.28 (1997) 633–655.  Zbl0879.35053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.