Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations
Matteo Novaga; Enrico Valdinoci
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 15, Issue: 4, page 914-933
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topNovaga, Matteo, and Valdinoci, Enrico. "Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations." ESAIM: Control, Optimisation and Calculus of Variations 15.4 (2008): 914-933. <http://eudml.org/doc/90944>.
@article{Novaga2008,
abstract = {
We consider a mesoscopic model for phase transitions in a periodic medium
and we construct multibump solutions.
The rational perturbative case is dealt with by explicit
asymptotics.
},
author = {Novaga, Matteo, Valdinoci, Enrico},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Oscillatory solutions of PDEs; phase transitions; asymptotic expansions; oscillatory solutions of PDEs; Ginzburg-Landau equation; Allen-Cahn equation; minimizer},
language = {eng},
month = {8},
number = {4},
pages = {914-933},
publisher = {EDP Sciences},
title = {Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations},
url = {http://eudml.org/doc/90944},
volume = {15},
year = {2008},
}
TY - JOUR
AU - Novaga, Matteo
AU - Valdinoci, Enrico
TI - Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2008/8//
PB - EDP Sciences
VL - 15
IS - 4
SP - 914
EP - 933
AB -
We consider a mesoscopic model for phase transitions in a periodic medium
and we construct multibump solutions.
The rational perturbative case is dealt with by explicit
asymptotics.
LA - eng
KW - Oscillatory solutions of PDEs; phase transitions; asymptotic expansions; oscillatory solutions of PDEs; Ginzburg-Landau equation; Allen-Cahn equation; minimizer
UR - http://eudml.org/doc/90944
ER -
References
top- F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in for a class of periodic Allen-Cahn equations. Comm. Partial Diff. Eq.27 (2002) 1537–1574.
- S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.27 (1979) 1084–1095.
- A. Ambrosetti and M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 233–252.
- D.I. Borisov, On the spectrum of the Schrödinger operator perturbed by a rapidly oscillating potential. J. Math. Sci. (N. Y.)139 (2006) 6243–6322.
- H. Brezis, Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983).
- G. Carbou, Unicité et minimalité des solutions d'une équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 305–318.
- R. de la Llave and E. Valdinoci, Multiplicity results for interfaces of Ginzburg-Landau-Allen-Cahn equations in periodic media. Adv. Math.215 (2007) 379–426.
- N. Dirr and E. Orlandi, Sharp-interface limit of a Ginzburg-Landau functional with a random external field. Preprint, (2007). URIhttp://www.mat.uniroma3.it/users/orlandi/pubb.html
- N. Dirr and N.K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media. Interfaces Free Bound.8 (2006) 79–109.
- N. Dirr, M. Lucia and M. Novaga, -convergence of the Allen-Cahn energy with an oscillating forcing term. Interfaces Free Bound.8 (2006) 47–78.
- L.C. Evans, Partial differential equations, Graduate Studies in Mathematics19. American Mathematical Society, Providence, RI (1998).
- A. Farina and E. Valdinoci, Geometry of quasiminimal phase transitions. Calc. Var. Partial Differential Equations33 (2008) 1–35.
- G. Gallavotti, The elements of mechanics, Texts and Monographs in Physics. Springer-Verlag, New York (1983). Translated from the Italian.
- D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften224. Springer-Verlag, Berlin, second edition (1983).
- V.L. Ginzburg and L.P. Pitaevskiĭ, On the theory of superfluidity. Soviet Physics. JETP34 (1958) 858–861 (Ž. Eksper. Teoret. Fiz. 1240–1245).
- T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin (1995).
- L.D. Landau, Collected papers of L.D. Landau. Edited and with an introduction by D. ter Haar, Second edition, Gordon and Breach Science Publishers, New York (1967).
- M. Marx, On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator. Asymptot. Anal.48 (2006) 295–357.
- V.K. Mel'nikov, On the stability of a center for time-periodic perturbations. Trudy Moskov. Mat. Obšč.12 (1963) 3–52.
- H. Matano and P.H. Rabinowitz, On the necessity of gaps. J. Eur. Math. Soc. (JEMS)8 (2006) 355–373.
- M. Novaga and E. Valdinoci, The geometry of mesoscopic phase transition interfaces. Discrete Contin. Dyn. Syst.19 (2007) 777–798.
- H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris (1892).
- P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. Comm. Pure Appl. Math.56 (2003) 1078–1134. Dedicated to the memory of Jürgen K. Moser.
- P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. II. Calc. Var. Partial Diff. Eq.21 (2004) 157–207.
- J.S. Rowlinson, Translation of J.D. van der Waals' “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. J. Statist. Phys.20 (1979) 197–244.
- M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 1241–1275.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.