La comonade de la kelleyfication convexe

Eduardo Dubuc; Horacio Porta

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1974)

  • Volume: 15, Issue: 4, page 343-352
  • ISSN: 1245-530X

How to cite

top

Dubuc, Eduardo, and Porta, Horacio. "La comonade de la kelleyfication convexe." Cahiers de Topologie et Géométrie Différentielle Catégoriques 15.4 (1974): 343-352. <http://eudml.org/doc/91141>.

@article{Dubuc1974,
author = {Dubuc, Eduardo, Porta, Horacio},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {fre},
number = {4},
pages = {343-352},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {La comonade de la kelleyfication convexe},
url = {http://eudml.org/doc/91141},
volume = {15},
year = {1974},
}

TY - JOUR
AU - Dubuc, Eduardo
AU - Porta, Horacio
TI - La comonade de la kelleyfication convexe
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1974
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 15
IS - 4
SP - 343
EP - 352
LA - fre
UR - http://eudml.org/doc/91141
ER -

References

top
  1. [1] Colli Ns, H.S., Completeness and compactness in linear topological spaces, Trans. A.M.S.79 (1955), 256-280. Zbl0064.35502MR69386
  2. [2] Day, M.M., Normed linear spaces, Springer-Verlag, Berlin (1957; 2nd Ed. 1962; 3rd Ed. 1973). Zbl0268.46013MR344849
  3. [3] Dubuc, E. and Porta, H., Convenient categories of topological algebras, and their duality theory, J. Pure Appl. Algebra1 (1971), 281-316 ( announced in Bull. A.M.S.77 (1971), 975-979) . Zbl0237.46075MR301079
  4. [4] Dudley, R.M., On sequential convergence, Trans. A.M.S.112 (1964), 483-507; correction same Trans.148 (1970), 623-624. Zbl0138.17401MR175081
  5. [5] Eckmann, B., Seminar on triple and categorical homology theory; Introduction, Lecture Notes80, Springer-Verlag, 1969. Zbl0164.30102MR240157
  6. [6] Fröli Cher, A. and Jarchow, H., La réflexivité des espaces vectoriels à génération compacte, C.R.A.S.Paris, Ser. A, 274 (1972), 616-617- Zbl0229.46005MR295026
  7. [7] Fröli Cher, A. and Jarchow, H., Zur Dualitâtstheoric kompakt erzeugter und lokalkonvexer Vektorrâume ( to appear in Comm. Math. Helv.). Zbl0229.46006MR388024
  8. [8] Grothendieck, A., Sur la complétion du dual d'un espace vectoriel topologique, C.R.A.S.Paris230 (1950), 605-606. Zbl0034.37401MR40573
  9. [9] Grothendieck, A., Espaces Vectoriels Topologiques, Sao Paulo, 1954. Zbl0058.33401MR77884
  10. [10] Hussain, T., Open mapping and closed graph theorem in topological vector spaces, Oxford Univ. Press, 1965. Zbl0124.06301MR178331
  11. [11] Kelley, J., General Topology, Van Nostrand, Princeton, 1955. Zbl0066.16604MR70144
  12. [12] Lindenstrauss, J., Some aspects of the theory of Banach spaces, Advances in Math.5 (1970),159-180. Zbl0203.12002MR279566
  13. [13] Mac Lane, S., Categories for the working mathematician, Springer-Verlag, N.Y.-Heidelberg- Berlin, 1971. Zbl0232.18001MR354798
  14. [14] Noble, N.L., k-spaces and some generalizations, Univer. of Rochester, Ph. D. dissertation, 1967. 
  15. [15] Porta, H., Compactly determined locally convex spaces, Math. Annalen196 (1972), 91-100. Zbl0219.46004MR296646
  16. [16] Ptak, V., On complete topol. vector spaces, Czech. Math. Jour.3 (78) (1953), 301-364. Zbl0057.09303MR64303
  17. [17] Seip, U., Kompakt erzeugte Vektorraüme und Analysis, Lecture Notes273, Springer-Verlag, 1972. Zbl0242.46003MR467794
  18. [18] Spanier, E., Infinite symmetric products, function spaces, and duality, Ann. Math.69 (1959), 142-198. Zbl0086.37401MR105106
  19. [19] Steenrod, N.E., A convenient category of topological spaces, Mich. Math. J.14(1967),133-152. Zbl0145.43002MR210075
  20. [20] Wheeler, R., The equicontinuous weak*-topology and semireflexivity, Univ. of Missouri, Ph. D. dissertation, 1970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.