On categories into which each concrete category can be embedded. II

Václav Koubek

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1977)

  • Volume: 18, Issue: 3, page 249-269
  • ISSN: 1245-530X

How to cite

top

Koubek, Václav. "On categories into which each concrete category can be embedded. II." Cahiers de Topologie et Géométrie Différentielle Catégoriques 18.3 (1977): 249-269. <http://eudml.org/doc/91186>.

@article{Koubek1977,
author = {Koubek, Václav},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {3},
pages = {249-269},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On categories into which each concrete category can be embedded. II},
url = {http://eudml.org/doc/91186},
volume = {18},
year = {1977},
}

TY - JOUR
AU - Koubek, Václav
TI - On categories into which each concrete category can be embedded. II
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1977
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 18
IS - 3
SP - 249
EP - 269
LA - eng
UR - http://eudml.org/doc/91186
ER -

References

top
  1. 1 N. Bourbaki, Théorie des Ensembles, Livre I, Hermann, Paris. Zbl0282.04001
  2. 2 Z. Hedrlin, A. Pultr, On categorical embeddings of topological structures into algebraic, Comment. Math. Univ. Carolinae7 (1966), 377- 400. Zbl0143.02901MR202797
  3. 3 Z. Hedrlin, Extension of structures and full embeddings of categories, Actes Congrès Intern. Math.1970, Tome I, 319- 322. Zbl0257.18013MR419554
  4. 4 V. Koubek, Set functors II, contravariant case, Comment. Math. Univ. Carolinae14 (1973), 47- 59. Zbl0256.18003MR318257
  5. 5 V. Koubek, J. Reiterman, Factor categories of the category of sets: description and concreteness, J. Pure Appl. Algebra4 (1974), 71- 77. Zbl0281.18005MR340363
  6. 6 V. Koubek, On categories into which each concrete category can be embedded, Cahiers Topo. et Géo. Diff.XVII- 1 (1976), 33-57. Zbl0336.18005MR417256
  7. 7 V. Koubek, P. Ptak, On limits in the generalized algebraic categories, contravariant case, To appear. Zbl0398.18006MR491874
  8. 8 L. Kucera, Úplná vnoreni struktur (Czech), Thesis, Prague, 1973. 
  9. 9 S. Mac Lane, Categories for the working mathematician. Springer, 1971. Zbl0906.18001MR354798
  10. 10 V. Trnková, When the product-preserving functors preserve limits, Comment. Math. Univ. Carolinae11 (1970), 365 - 378. Zbl0232.18003MR271190
  11. 11 V. Trnková, Some properties of set functors, Comment. Math. Univ. Carolinae10 (1969), 323- 352. Zbl0183.30401MR252474

NotesEmbed ?

top

You must be logged in to post comments.