A lifting theorem for right adjoints

Manfred B. Wischnewsky

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1978)

  • Volume: 19, Issue: 2, page 155-168
  • ISSN: 1245-530X

How to cite

top

Wischnewsky, Manfred B.. "A lifting theorem for right adjoints." Cahiers de Topologie et Géométrie Différentielle Catégoriques 19.2 (1978): 155-168. <http://eudml.org/doc/91200>.

@article{Wischnewsky1978,
author = {Wischnewsky, Manfred B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Commutative Square of Functors; Adjointness; Monadic Functors; Lifting; Topologically-Algebraic Functors; (E,M)-Cosemifactorizable Functors},
language = {eng},
number = {2},
pages = {155-168},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A lifting theorem for right adjoints},
url = {http://eudml.org/doc/91200},
volume = {19},
year = {1978},
}

TY - JOUR
AU - Wischnewsky, Manfred B.
TI - A lifting theorem for right adjoints
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1978
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 19
IS - 2
SP - 155
EP - 168
LA - eng
KW - Commutative Square of Functors; Adjointness; Monadic Functors; Lifting; Topologically-Algebraic Functors; (E,M)-Cosemifactorizable Functors
UR - http://eudml.org/doc/91200
ER -

References

top
  1. 1 B Astiani, A., Ehresmann, C., Categories of sketched structures, Cahiers Topo. et Géo. Diff.XIII-2 (1972), 105-214. Zbl0263.18009MR323856
  2. 2 Brummer, G., Topological functors and structure functors, Lecture Notes in Math.540, Springer (1976), 109-136. Zbl0339.18003MR442052
  3. 3 Herrlich, H., Initial completions, Math. Z.150 (1976), 101-110. Zbl0319.18001MR437614
  4. 4 Herrlich, H., Topological functors, Gen. Top. Appl.4 (1974), 125- 142. Zbl0288.54003MR343226
  5. 5 Hoffmann, R.-E., Semi-identifying lifts and a generalizationof the duality theorem for topological functors, Math. Nachr.74 (1976), 297- 307. Zbl0345.18002MR428256
  6. 6 Hong, Y.H., Studies on categories of universal topological algebras, Thesis, Mc Master University, 1974. 
  7. 7 Hong, S.S., Categories in which every monosource is initial, KymgpookMath. J.15 (1975), 133- 139. Zbl0309.18004MR369466
  8. 8 Kennison, I.F., Reflective functors in general topology and elsewhere, Trans. A. M. S.118 (1965), 303-315. Zbl0134.40705MR174611
  9. 9 Porst, H.E., Characterisation of MacNeille completions and topological functors, Manuscripta Math. ( to appear) . Zbl0379.18004
  10. 10 Nel, L.D., Cartesian closed topological categories, Lecture Notes in Math.540, Springer (1976), 439-451. Zbl0336.54006MR447369
  11. 11 Tholen, W., Relative Bildzerlegungen und algebraischeKategorien, Dissertation, Universität Münster, 1974. 
  12. 12 Tholen, W., On Wyler's taut lifting theorem ( to appear). Zbl0374.18002
  13. 13 Wischnewsky, M.B., Aspects of categorical algebra in initial structure categories, Cahiers Topo. et Géo. Diff. XV-4 (1974), 419 - 444. Zbl0324.18002MR382389
  14. 14 Wischnewsky, M.B., On monoidal closed topological categories, I, Lecture Notes in Math.540, Springer (1976), 676 - 686. Zbl0352.18016MR466256
  15. 15 Wolff, H., Topological functors and right adjoints, 1975 ( to appear). Zbl0388.18006MR506574
  16. 16 Wyler, O., On the categories of general topology and topological algebra, Arch. d. Math.22/1 (1971), 7-15. Zbl0265.18008MR287563

Citations in EuDML Documents

top
  1. Manfred B. Wischnewsky, Topologically-algebraic structure functors full reflective or coreflective restrictions of semitopological functors
  2. Lurdes Sousa, Walter Tholen, Order-enriched solid functors
  3. Reinhard Börger, Walter Tholen, Remarks on topologically algebraic functors
  4. Manfred B. Wischnewsky, Structure functors - Compositions of arbitrary right adjoints with topological functors I -
  5. Manfred B. Wischnewsky, A generalized duality theorem for structure functors
  6. J. Adámek, H. Herrlich, G. E. Strecker, The structure of initial completions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.