Compact and small rank perturbations of conformally symplectic structures

Heikki Haahti

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1978)

  • Volume: 19, Issue: 3, page 223-268
  • ISSN: 1245-530X

How to cite

top

Haahti, Heikki. "Compact and small rank perturbations of conformally symplectic structures." Cahiers de Topologie et Géométrie Différentielle Catégoriques 19.3 (1978): 223-268. <http://eudml.org/doc/91203>.

@article{Haahti1978,
author = {Haahti, Heikki},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Compact and Small Rank Perturbations; Conformally Symplectic Structures; Symplectic Banach C3-Manifold; Conformally Diffeomorphic},
language = {eng},
number = {3},
pages = {223-268},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Compact and small rank perturbations of conformally symplectic structures},
url = {http://eudml.org/doc/91203},
volume = {19},
year = {1978},
}

TY - JOUR
AU - Haahti, Heikki
TI - Compact and small rank perturbations of conformally symplectic structures
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1978
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 19
IS - 3
SP - 223
EP - 268
LA - eng
KW - Compact and Small Rank Perturbations; Conformally Symplectic Structures; Symplectic Banach C3-Manifold; Conformally Diffeomorphic
UR - http://eudml.org/doc/91203
ER -

References

top
  1. 1 P.R. Chernoff and J.E. Marsden, Properties of infinite dimensional Hamilton systems, Lecture Notes in Math.425, Springer (1974). Zbl0301.58016MR650113
  2. 2 Dunford and Schwartz, Linear operators I, Interscience, 1971. Zbl0084.10402
  3. 3 J. EellsJr., A setting of global Analysis, Bull. A. M. S.72 (1966), 751. MR203742
  4. 4 C. Ehresmann et P. Libermann, Sur les formes différentielles extérieures de degré 2, C. R. A. S. Paris227 (1948), 420. Zbl0034.19903MR26214
  5. 5 H. Haahti, Compact deformations of conformally flat structures on almost symplectic Banach manifolds, Math. Inst., Univ. Warwick, Coventry, 1975. 
  6. 6 H. Haahti, Uber konforme Differentialgeometrie und zugeordnete Verjüngungsoperatoren in Hilbert- Raümen, Ann. A cad. Sci. Fenn.AI, 358 (1965). Zbl0139.38702MR179747
  7. 7 H. Haahti, Zur Verallgemeinerung des Spur-Operators, Ibid.369 (1965). Zbl0143.36801MR188805
  8. 8 H. Haahti, Über Tensorverjüngung in unendlichdimensionaler Geometrie, Ibid.466 (1970). Zbl0234.58003MR268919
  9. 9 H. Haahti, Uber konform symplektische Räume, Dept. Math., Univ. Oulu, 1968. 
  10. 10 H. Haahti, Uber isotrope Unterräume in einer fast-hamiltonschen Mannigfaltigkeit, Dept. Math, Univ. Oulu (1971). 
  11. 11, H. Haahti, Integrability of isotropic distributions, ReportsA3, Dept. Math., Univ. Helsinki (1975). 
  12. 12 S. Lang, Differentiable manifolds, Addison-Wesley, 1972. Zbl0239.58001
  13. Hwa-Chung Lee, 13 A kind of evendimensional differential Geometry, Amer. J. of Math.65 (1943), 433- 438. Zbl0060.38302MR8495
  14. 14 Hwa-Chung Lee, On evendimensional skew-metric spaces and their groups of transformations, Amer. J. of Math.67 (1945), 321-328. Zbl0060.38704MR12897
  15. 15 Th. H. Lepage, Sur certaines congruences des formes alternées, Bull. Soc. Royale des Sciences de Liège (1945). Zbl0060.04202MR20072
  16. 16 P. Libermann, Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France83 (1955), 195-224. Zbl0064.41702MR79766
  17. 17 J. Moser, On volume elements on a manifold, Trans. A. M. S.120 (1965), 286. Zbl0141.19407MR182927
  18. 18 F. und R. Nevanlinna, A bsolute Analysis, Springer, 1973. Zbl0089.02903
  19. 19 G. P Apy, Sur la divisibilité des formes alternées, Bull. Soc. Royale des Sc. de Liège (1947). Zbl0034.01101
  20. 20 F. Riesz et B.S. Nagy, Leçons d'Analyse fonctionnelle, Acad. Sc. Hongrie. Zbl0046.33103
  21. 21 A. Weinstein, Symplectic structures on Banach manifolds, Bull. A. M. S.75 (1969). Zbl0179.50104MR245052
  22. 22 A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Adv. in Math.3 (1971). Zbl0213.48203MR286137
  23. 23 H. Weyl, Reine Infinitesimalgeometrie, Math. Zeitschri ft2 (1918). JFM46.1301.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.