An exponential law for regular ordered Banach spaces

Kyung Chan Min

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1983)

  • Volume: 24, Issue: 3, page 279-298
  • ISSN: 1245-530X

How to cite

top

Kyung Chan Min. "An exponential law for regular ordered Banach spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 24.3 (1983): 279-298. <http://eudml.org/doc/91331>.

@article{KyungChanMin1983,
author = {Kyung Chan Min},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {projective tensor product; internal Hom-functor; exponential law; symmetric monoidal closed category; well-equipped category; regular ordered Banach spaces; Banach lattices; equalizers; coequalizers},
language = {eng},
number = {3},
pages = {279-298},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {An exponential law for regular ordered Banach spaces},
url = {http://eudml.org/doc/91331},
volume = {24},
year = {1983},
}

TY - JOUR
AU - Kyung Chan Min
TI - An exponential law for regular ordered Banach spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1983
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 24
IS - 3
SP - 279
EP - 298
LA - eng
KW - projective tensor product; internal Hom-functor; exponential law; symmetric monoidal closed category; well-equipped category; regular ordered Banach spaces; Banach lattices; equalizers; coequalizers
UR - http://eudml.org/doc/91331
ER -

References

top
  1. 1 B.B. Anaschewski & E. Nelson, Tensor products and bimorphisms, Canad. Math. Bull.19 (4) (1976), 385-402. Zbl0392.18003MR442059
  2. 2 J. Cigler, V. Losert & P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Appl. Math.46M. Dekker, New York and Basel, 1979. Zbl0411.46044MR533819
  3. 3 E.B. Davies, The structure and ideal theory of the predual of a Banach lattice, Trans. A. M. S.131 (1968), 544- 555. Zbl0159.41503MR222604
  4. 4 S. Eilenberg & G.M. Kelly, Closed categories, Proc. Conf. Cat. Algebra L a Jolla1965, Springer (1966), 421-562. Zbl0192.10604MR225841
  5. 5 A.J. Ellis, Linear operators in partially ordered normed vector spaces, J. London Math. Soc.41 (1966), 323- 332. Zbl0141.12804MR193485
  6. 6 D.H. Fremlin, Tensor products of Banach lattices, Math. Ann.211 (1974), 87- 106. Zbl0272.46050MR367620
  7. 7 A. HARTKÄMPER & H. NEUMANN (Ed.), Foundations of quantum Mechanics and ordered linear spaces, Lecture Notes in Physics29, Springer (1974). Zbl0271.00013MR395574
  8. 8 H.H. Errlich, Topological functors, General Top. and Appl.4 (1974), 125 -142. Zbl0288.54003MR343226
  9. 9 H. Herrlich & G.E. Strecker, Category Theory, Heldermann, Berlin1979. Zbl0437.18001MR571016
  10. 10 C. Herz & J. Wick Pelletier, Dual functors and integral operators in the category of Banach spaces, J. Pure Appl. Algebra8 (1976), 5- 22. Zbl0331.46064MR487490
  11. 11 G.J.O. Jameson, Ordered linear spaces, Lecture Notes in Math.141, Springer (1970). Zbl0196.13401MR438077
  12. 12 G.M. Kelly, T ensor products in categories, J. of Algebra2 (1965), 15 - 37. Zbl0135.02102MR177023
  13. 13 K.C. Min, Categorical aspects of ordered vector structures, PH. D.-Thesis, Carleton University, 1981. 
  14. 14 L. Namioka, Partially ordered linear topological spaces, MemoirsA. M. S.24 (1957). Zbl0105.08901MR94681
  15. 15 L.D. Nel, Riesz-like representations for operators on L1 by categorical methods, Advances in Math. (to appear). Zbl0508.46033
  16. 16 A.L. Peressini, Ordered topological vector spaces, Harper & Row, 1967. Zbl0169.14801MR227731
  17. 17 H.H. Schaefer, Banach lattices and positive operators, Springer, 1974. Zbl0296.47023MR423039
  18. 18 J. Wick Pelletier, Dual functors and the Radon-Nikodym property in the category of Banach spaces, J. Austral. Math. Soc. (Ser. A) 27 (1979), 479-494. Zbl0402.46042MR542663
  19. 19 A.W. Wickstead, Spaces of linear operators between partially ordered Banach spaces, Proc. London Math. Soc. (3) 28 (1974), 141- 158. Zbl0272.47026MR333828
  20. 20 G. Wittstock, Ordered normed tensor products, Lecture Notes in Physics29, Springer (1974), 67-84. Zbl0329.46007MR487388
  21. 21 G. Wittstock, Eine B emerkung über Tensorprodukte von Banachverbänden, Arch. Math.XXV (1974), 627- 634. Zbl0311.46002MR385516
  22. 22 Y.-C. Wong& K.-F. Ng, Partially ordered topological vector spaces, Oxford Math. Monographs, Clarendon, Oxford (1973). Zbl0269.46007MR454581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.