On limits and colimits in the Kleisli category

Jenö Szigeti

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1983)

  • Volume: 24, Issue: 4, page 381-391
  • ISSN: 1245-530X

How to cite

top

Szigeti, Jenö. "On limits and colimits in the Kleisli category." Cahiers de Topologie et Géométrie Différentielle Catégoriques 24.4 (1983): 381-391. <http://eudml.org/doc/91336>.

@article{Szigeti1983,
author = {Szigeti, Jenö},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Kleisli category; cocompleteness; completeness; Eilenberg-Moore category; lifting of adjoint functors},
language = {eng},
number = {4},
pages = {381-391},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On limits and colimits in the Kleisli category},
url = {http://eudml.org/doc/91336},
volume = {24},
year = {1983},
}

TY - JOUR
AU - Szigeti, Jenö
TI - On limits and colimits in the Kleisli category
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1983
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 24
IS - 4
SP - 381
EP - 391
LA - eng
KW - Kleisli category; cocompleteness; completeness; Eilenberg-Moore category; lifting of adjoint functors
UR - http://eudml.org/doc/91336
ER -

References

top
  1. 1 Adamek, J., Colimits of algebras revisited, Bull. Austr. Math. Soc.15 (1976). Zbl0365.18007MR430025
  2. 2 Adamek, J. & Trnkova, V., Varietors and machines, COINS Technical Report 78-6, Univ. of Mass. at Amherst (1978). Zbl0491.18003
  3. 3 Adamek, J. & Koubek, V., Simple construction of colimits of algebras, to appear. Zbl0446.18003
  4. 4 Andreka, H., Nemeti, I. & Sain, I., Cone injectivity and some Birkhoff-type theorems in categories, Proc. Coll. Universal Algebra (Esztergom1977), Coll. Soc. J. Bolyai, North Holland, to appear. 
  5. 5 Barr, M., Coequalizers and free triples, Math. Z.116 (1970). Zbl0194.01701MR272849
  6. 6 Eilenberg, S.& Moore, J., Adjoint functors and triples, Ill. J. Math.9 (1965). Zbl0135.02103MR184984
  7. 7 Johnstone, P.T., Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc.7 (1975). Zbl0315.18004MR390018
  8. 8 Kleisli, H., Every standard construction is induced by a pair of adjoint functors, Proc. A. M. S.16 (1965). Zbl0138.01704MR177024
  9. 9 Koubek, V.& Reiterman, J., Categorical constructions of free algebras, colimits and completions of partial algebras, J. Pure Appl. Algebra14 (1979). Zbl0403.18002MR524187
  10. 10 Linton, F.E.J., Coequalizers in categories of algebras, Lecture Notes in Math.80, Springer (1969). Zbl0181.02902MR244341
  11. 11 Maclane, S., Categories for the working mathematician, Springer GTM61971. Zbl0705.18001MR354798
  12. 12 Manes, E.G., Alge braic Theories, Springer GTM26, 1976. Zbl0353.18007MR419557
  13. 13 Tholen, W., Adjungierte Dreiecke, Colimites und Kan-Erweitérungen, Math. Ann.217(1975). Zbl0325.18002MR393172
  14. 14 Tholen, W., On Wyler's taut lift theorem, Gen. Top. Appl.8 (1975). Zbl0374.18002
  15. 15 Tholen, W., Wischnewsky, M.B. & Wolff, H., Semi-topological functors III: Lifting of monads and adjoint functors, Seminarberichte 4, Fachbereich für Math., Fernuniversität Hagen (1978). Zbl0428.18003
  16. 16 Ulmer, F., Properties of dense and relative adjoint functors, J. Algebra8 (1968). Zbl0182.34403MR222138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.