Archimedian local C -rings and models of synthetic differential geometry

Marta Bunge; Eduardo J. Dubuc

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1986)

  • Volume: 27, Issue: 3, page 3-22
  • ISSN: 1245-530X

How to cite

top

Bunge, Marta, and Dubuc, Eduardo J.. "Archimedian local $C^\infty $-rings and models of synthetic differential geometry." Cahiers de Topologie et Géométrie Différentielle Catégoriques 27.3 (1986): 3-22. <http://eudml.org/doc/91384>.

@article{Bunge1986,
author = {Bunge, Marta, Dubuc, Eduardo J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {local ring map; -ring objects; topos; local Archimedean; model for synthetic differential geometry; smooth manifolds; Dedekind reals},
language = {eng},
number = {3},
pages = {3-22},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Archimedian local $C^\infty $-rings and models of synthetic differential geometry},
url = {http://eudml.org/doc/91384},
volume = {27},
year = {1986},
}

TY - JOUR
AU - Bunge, Marta
AU - Dubuc, Eduardo J.
TI - Archimedian local $C^\infty $-rings and models of synthetic differential geometry
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1986
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 27
IS - 3
SP - 3
EP - 22
LA - eng
KW - local ring map; -ring objects; topos; local Archimedean; model for synthetic differential geometry; smooth manifolds; Dedekind reals
UR - http://eudml.org/doc/91384
ER -

References

top
  1. 1 O. Bruno, Internal mathematics in toposes, Trabajos de Matem.70, I.A.M, Buenos-Aires (1984). 
  2. 2 E.J. Dubuc, Sur les modèles de la Géometric Différentielle Synthétique, Cahiers Top. et Géom. Diff. XX-3 (1979), 231-279. Zbl0473.18008MR557083
  3. 3 E.J. Dubuc, C∞-schemes, Amer. J. Math.103 (1981), 683-690. Zbl0483.58003
  4. 4 E.J. Dubuc, Logical opens and real numbers in topoi, J. Pure Appl. Algebra (to appear). Zbl0608.18004MR866615
  5. 5 E.J. Dubuc & G. Taubin, Analytic rings, Cahiers Top. et Géom. Diff.XXIV (1983). Zbl0575.32004
  6. 6 A. Kock, Properties of well adapted models for synthetic differential geometry, J. Pure Appl. Algebra20 (1981), 55-70. Zbl0487.18006MR596153
  7. 7 A. Kock, Synthetic Differential Geometry, Cambridge Univ. Press, 1981. Zbl0466.51008MR649622
  8. 8 I. Moerdijk & G.E. Reyes, Smooth spaces versus continuous spaces in models for synthetic differential geometryJ. Pure Appl. Algebra32 (1984). Zbl0535.18003MR741963
  9. 9 M. Bunge & E.J. Dubuc, Local concepts in SDG and germ representability, in: Lopez Escobar, Kueker & Smith (ed.), Mathematical Logic and Theoretical Computer Science, M. Dekker (to appear). Zbl0658.18004MR930679
  10. 10 A. Joyal & G.E. Reyes, Separably real closed local rings, Sydney Category Seminar, June 1982. Zbl0617.18004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.