A generalized global differential calculus. II. Application to invariance under a Lie group

Joseph Johnson

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1986)

  • Volume: 27, Issue: 4, page 89-105
  • ISSN: 1245-530X

How to cite

top

Johnson, Joseph. "A generalized global differential calculus. II. Application to invariance under a Lie group." Cahiers de Topologie et Géométrie Différentielle Catégoriques 27.4 (1986): 89-105. <http://eudml.org/doc/91388>.

@article{Johnson1986,
author = {Johnson, Joseph},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {universes; generalized differential calculus; infinitesimal invariants; group actions; Lie groups; Local invariants},
language = {eng},
number = {4},
pages = {89-105},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A generalized global differential calculus. II. Application to invariance under a Lie group},
url = {http://eudml.org/doc/91388},
volume = {27},
year = {1986},
}

TY - JOUR
AU - Johnson, Joseph
TI - A generalized global differential calculus. II. Application to invariance under a Lie group
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1986
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 27
IS - 4
SP - 89
EP - 105
LA - eng
KW - universes; generalized differential calculus; infinitesimal invariants; group actions; Lie groups; Local invariants
UR - http://eudml.org/doc/91388
ER -

References

top
  1. 0 Johnson, J., A generalized global differential calculus I, Cahiers Top. et Géom. Diff.XXVII-3 (1986). Zbl0603.18004
  2. 1 Schubert, H., Categories, Springer, 1972. Zbl0253.18002MR349793
  3. 2 Petrich, M., Introduction to Semigroups Charles E. Merrill Publ. C°, Bell & Howell, Columbus, Ohio, 1973. Zbl0321.20037MR393206
  4. 3 Petrich, M., Inverse semigroups, Wiley, New York1984. Zbl0546.20053MR752899
  5. 4 Macshane, E.J., Order-preserving maps and integration processes, Ann. of Math. Studies31, Princeton Univ. Press, 953. Zbl0051.29301
  6. 5 Wraith, G.C., Lectures on elementary topoi, Lecture Notes in Math.445, Springer (1975). Zbl0323.18005MR393179
  7. 6 Ehresmann, C., Gattungen von lokalen Strukturen, Jahres. d. Deutschen Math.60-2 (1957); re-edited in Charles Ehresmann: Oeuvres complètes et comentées, Part II, Amiens, 1983. Zbl0097.37803MR95894
  8. 7 Grauert, H.& Remmert, R., Coherent analytic sheaves, Grundlagen d. Math. Wissensch., Springer, 1984. Zbl0537.32001MR755331
  9. 8 Johnson, J., Order for systems of differential equations and a generalization of the notion of differential ring, J. of Algebra78 (1982), 91-119. Zbl0496.12019MR677713
  10. 9 Moerdijk I. & Reyes, G.E., Rings of smooth functions and their localizations, I (to appear). Zbl0592.18005MR837547
  11. 10 Kock, A ., Synthetic Differential Geometry, Cambridge Univ. Press, 1981. Zbl0466.51008MR649622
  12. 11 Palais, R., Slices and invariant embeddings, in Seminar on transformation groups (ed. A. Borel), Ann. of Math. Studies46, Princeton Univ. Press, 1960. MR116341
  13. 12 Nemytskii, V.V.& Stepanov, V.V., Qualitative theory of differential equations, Princeton Univ. Press, 1960. Zbl0089.29502MR121520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.