A generalized global differential calculus. II. Application to invariance under a Lie group
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1986)
- Volume: 27, Issue: 4, page 89-105
- ISSN: 1245-530X
Access Full Article
topHow to cite
topJohnson, Joseph. "A generalized global differential calculus. II. Application to invariance under a Lie group." Cahiers de Topologie et Géométrie Différentielle Catégoriques 27.4 (1986): 89-105. <http://eudml.org/doc/91388>.
@article{Johnson1986,
author = {Johnson, Joseph},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {universes; generalized differential calculus; infinitesimal invariants; group actions; Lie groups; Local invariants},
language = {eng},
number = {4},
pages = {89-105},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A generalized global differential calculus. II. Application to invariance under a Lie group},
url = {http://eudml.org/doc/91388},
volume = {27},
year = {1986},
}
TY - JOUR
AU - Johnson, Joseph
TI - A generalized global differential calculus. II. Application to invariance under a Lie group
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1986
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 27
IS - 4
SP - 89
EP - 105
LA - eng
KW - universes; generalized differential calculus; infinitesimal invariants; group actions; Lie groups; Local invariants
UR - http://eudml.org/doc/91388
ER -
References
top- 0 Johnson, J., A generalized global differential calculus I, Cahiers Top. et Géom. Diff.XXVII-3 (1986). Zbl0603.18004
- 1 Schubert, H., Categories, Springer, 1972. Zbl0253.18002MR349793
- 2 Petrich, M., Introduction to Semigroups Charles E. Merrill Publ. C°, Bell & Howell, Columbus, Ohio, 1973. Zbl0321.20037MR393206
- 3 Petrich, M., Inverse semigroups, Wiley, New York1984. Zbl0546.20053MR752899
- 4 Macshane, E.J., Order-preserving maps and integration processes, Ann. of Math. Studies31, Princeton Univ. Press, 953. Zbl0051.29301
- 5 Wraith, G.C., Lectures on elementary topoi, Lecture Notes in Math.445, Springer (1975). Zbl0323.18005MR393179
- 6 Ehresmann, C., Gattungen von lokalen Strukturen, Jahres. d. Deutschen Math.60-2 (1957); re-edited in Charles Ehresmann: Oeuvres complètes et comentées, Part II, Amiens, 1983. Zbl0097.37803MR95894
- 7 Grauert, H.& Remmert, R., Coherent analytic sheaves, Grundlagen d. Math. Wissensch., Springer, 1984. Zbl0537.32001MR755331
- 8 Johnson, J., Order for systems of differential equations and a generalization of the notion of differential ring, J. of Algebra78 (1982), 91-119. Zbl0496.12019MR677713
- 9 Moerdijk I. & Reyes, G.E., Rings of smooth functions and their localizations, I (to appear). Zbl0592.18005MR837547
- 10 Kock, A ., Synthetic Differential Geometry, Cambridge Univ. Press, 1981. Zbl0466.51008MR649622
- 11 Palais, R., Slices and invariant embeddings, in Seminar on transformation groups (ed. A. Borel), Ann. of Math. Studies46, Princeton Univ. Press, 1960. MR116341
- 12 Nemytskii, V.V.& Stepanov, V.V., Qualitative theory of differential equations, Princeton Univ. Press, 1960. Zbl0089.29502MR121520
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.