A unified approach to the lifting of adjoints

A. J. Power

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1988)

  • Volume: 29, Issue: 1, page 67-77
  • ISSN: 1245-530X

How to cite

top

Power, A. J.. "A unified approach to the lifting of adjoints." Cahiers de Topologie et Géométrie Différentielle Catégoriques 29.1 (1988): 67-77. <http://eudml.org/doc/91413>.

@article{Power1988,
author = {Power, A. J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {adjoint squares; adjoint triangles; monads; functors of descent type; lifting of adjoints},
language = {eng},
number = {1},
pages = {67-77},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A unified approach to the lifting of adjoints},
url = {http://eudml.org/doc/91413},
volume = {29},
year = {1988},
}

TY - JOUR
AU - Power, A. J.
TI - A unified approach to the lifting of adjoints
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1988
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 29
IS - 1
SP - 67
EP - 77
LA - eng
KW - adjoint squares; adjoint triangles; monads; functors of descent type; lifting of adjoints
UR - http://eudml.org/doc/91413
ER -

References

top
  1. 1, M. Barr, The point of the empty set, Cahiers Top. et Géom. Diff.XV-4 (1972), 357-368, Zbl0258.18003MR323861
  2. 2, M. Barr & C. Wells, Toposes, Triples and Theories, Springer, 1985, Zbl0567.18001MR771116
  3. 3, R. Borger, W. Tholen, M.B. Wischnewsky & H. Wolff, Compact and hypercomplete categories, J. Pure Appl. Algebra21 (1981), 129-144, Zbl0457.18003MR614376
  4. 4, E. Dubuc, adjoint triangles, Lecture Notes in Math, 61 (1968), 69-91, Zbl0172.02103MR233864
  5. 5, P.T. Johnstone, Adjoint lifting theorems for categories of algbras, Bull. London Math. Soc.7 (1975), 294-297, Zbl0315.18004MR390018
  6. 6 F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A.50 (1963), 869-873, Zbl0119.25901MR158921
  7. 7, F.E.J. Linton, Coequalizers in categories of algebras, Lecture Notes in Math, 80 (1969), 75-90, Zbl0181.02902MR244341
  8. 8, A.J. Power, Butler's Theorems and adjoint squares, Ph,D, Thesis, McGill Univ., 1984. 
  9. 9 B.A. Rattray, Adjoints to functors from categories of algebras, Comm. Algebra3 (1975), 563-569, Zbl0316.18004MR376804
  10. 11 R. Street, The formal theory of monads, J. Pure Appl. Algebre2 (1972), 149-168, Zbl0241.18003MR299653
  11. 11, R. Street, W. Tholen, M.B. Wischnewsky & H. Wolff, Semitopological functors, III: Lifting of monads and adjoint functors, J. Pure Appl. Algebra16 (1980), 299-314. Zbl0428.18003MR558494
  12. 12 W. Tholen, Relative Bildzerlegungen und algebraische Kategorien, Ph,D, Thesis, Univ, Munster, 1974, 
  13. 13 W. Tholen, Adjungierte Dreiecke, Colimites und Kan-ErweiterungenMath. Ann, 217 (1975), 121-129, Zbl0325.18002MR393172

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.