Some combinatorial calculus on Lie derivative

M. Carmen Minguez

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1988)

  • Volume: 29, Issue: 3, page 241-247
  • ISSN: 1245-530X

How to cite

top

Minguez, M. Carmen. "Some combinatorial calculus on Lie derivative." Cahiers de Topologie et Géométrie Différentielle Catégoriques 29.3 (1988): 241-247. <http://eudml.org/doc/91424>.

@article{Minguez1988,
author = {Minguez, M. Carmen},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Synthetic Differential Geometry; Lie derivative; interior product of a form with respect to a field; action of a p-form on a p-tuple of vector fields; infinitesimally linear objects; infinite dimensional objects; objects with singularities},
language = {eng},
number = {3},
pages = {241-247},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Some combinatorial calculus on Lie derivative},
url = {http://eudml.org/doc/91424},
volume = {29},
year = {1988},
}

TY - JOUR
AU - Minguez, M. Carmen
TI - Some combinatorial calculus on Lie derivative
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1988
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 29
IS - 3
SP - 241
EP - 247
LA - eng
KW - Synthetic Differential Geometry; Lie derivative; interior product of a form with respect to a field; action of a p-form on a p-tuple of vector fields; infinitesimally linear objects; infinite dimensional objects; objects with singularities
UR - http://eudml.org/doc/91424
ER -

References

top
  1. 1, R. Lavendhomme, Leçons de Géométrie Différenteille Synthéthique Naïve, Monographies de Math.3, Inst. Math.Louvain-La-Neuve1987, Zbl0688.18006MR933087
  2. 2, A. Kock, Synthetic Differential Geometry, London Math, Soc, Lecture Notes Series 51, Cambridge Univ, Press1981, Zbl0466.51008MR649622
  3. 3, A. Kock, G.E. Reyes & B. Veit, Forms and integration in Synthetic Differential Geometry, Aarhua Preprint Series31 (1980), Zbl0465.51005
  4. 4 M.C. Minguez, Calculo diferencial sintético y su interpretacion en modelos de prehaces, Publ. Sem. Mat. Serie II, Sec, 2, 15, Univ, Zaragoza (1985), 
  5. 5, M.C. Minguez, Wedge product of forms in Synthetic Differential Geometry, Cahiers Top. et Géom. Diff. Categ.XXIX-1 t 1988), 51-66, Zbl0647.18005MR941650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.