Some combinatorial calculus on Lie derivative
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1988)
- Volume: 29, Issue: 3, page 241-247
- ISSN: 1245-530X
Access Full Article
topHow to cite
topMinguez, M. Carmen. "Some combinatorial calculus on Lie derivative." Cahiers de Topologie et Géométrie Différentielle Catégoriques 29.3 (1988): 241-247. <http://eudml.org/doc/91424>.
@article{Minguez1988,
author = {Minguez, M. Carmen},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Synthetic Differential Geometry; Lie derivative; interior product of a form with respect to a field; action of a p-form on a p-tuple of vector fields; infinitesimally linear objects; infinite dimensional objects; objects with singularities},
language = {eng},
number = {3},
pages = {241-247},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Some combinatorial calculus on Lie derivative},
url = {http://eudml.org/doc/91424},
volume = {29},
year = {1988},
}
TY - JOUR
AU - Minguez, M. Carmen
TI - Some combinatorial calculus on Lie derivative
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1988
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 29
IS - 3
SP - 241
EP - 247
LA - eng
KW - Synthetic Differential Geometry; Lie derivative; interior product of a form with respect to a field; action of a p-form on a p-tuple of vector fields; infinitesimally linear objects; infinite dimensional objects; objects with singularities
UR - http://eudml.org/doc/91424
ER -
References
top- 1, R. Lavendhomme, Leçons de Géométrie Différenteille Synthéthique Naïve, Monographies de Math.3, Inst. Math.Louvain-La-Neuve1987, Zbl0688.18006MR933087
- 2, A. Kock, Synthetic Differential Geometry, London Math, Soc, Lecture Notes Series 51, Cambridge Univ, Press1981, Zbl0466.51008MR649622
- 3, A. Kock, G.E. Reyes & B. Veit, Forms and integration in Synthetic Differential Geometry, Aarhua Preprint Series31 (1980), Zbl0465.51005
- 4 M.C. Minguez, Calculo diferencial sintético y su interpretacion en modelos de prehaces, Publ. Sem. Mat. Serie II, Sec, 2, 15, Univ, Zaragoza (1985),
- 5, M.C. Minguez, Wedge product of forms in Synthetic Differential Geometry, Cahiers Top. et Géom. Diff. Categ.XXIX-1 t 1988), 51-66, Zbl0647.18005MR941650
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.